Skip to main content
Log in

LES investigation of cavitating flows around a sphere with special emphasis on the cavitation–vortex interactions

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Large eddy simulation (LES) was coupled with a homogeneous cavitation model to study turbulent cavitating flows around a sphere. The simulations are in good agreement with available experimental data and the simulated accuracy has been evaluated using the LES verification and validation method. Various cavitation numbers are simulated to study important flow characteristics in the sphere wake, e.g. periodic cavity growth/contraction, interactions between the cloud and sheet cavitations and the vortex structure evolution. The spectral characteristics of the wake for typical cloud cavitation conditions were classified as the periodic cavitation mode, high Strouhal number mode and low Strouhal number mode. Main frequency distributions in the wake were analyzed and different dominant flow structures were identified for each of the three modes. Further, the cavitation and vortex relationship was also studied, which is an important issue associated with complex cavitating sphere wakes. Three types of cavitating vortex structures alternate, which indicates that three different cavity shedding regimes may exist in the wake. Analysis of vorticity transport equation shows a significant vorticity increase at the cavitation closure region and in the vortex cavitation region. This study provides a physical perspective to further understand the flow mechanisms in cavitating sphere wakes.

Graphic Abstract

Three types of cavitating vortex structures alternate, i.e. the sub-scale vortex, fine vortex structure and large-scale vortex, are clearly discernible. The cavity shedding process produces the streamwise vortex cavitation, horseshoe-like shaped vortex cavitation and other complex vortex structures. This study provides a physical perspective to further understand the flow mechanisms in cavitating sphere wakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Wang, G., Wu, Q., Huang, B.: Dynamics of cavitation–structure interaction. Acta. Mech. Sin. 33, 685–708 (2017)

    Article  Google Scholar 

  2. Luo, X., Ji, B., Tsujimoto, Y.: A review of cavitation in hydraulic machinery. J. Hydrodyn. Ser. B 28, 335–358 (2016)

    Article  Google Scholar 

  3. Brandner, P.A., Walker, G.J., Niekamp, P.N., et al.: An experimental investigation of cloud cavitation about a sphere. J. Fluid Mech. 656, 147–176 (2010)

    Article  Google Scholar 

  4. De Graaf, K.L., Brandner, P.A., Pearce, B.W.: Spectral content of cloud cavitation about a sphere. J. Fluid Mech. 812, 1–13 (2017)

    Article  MathSciNet  Google Scholar 

  5. Orley, F., Trummler, T., Hickel, S., et al.: Large-eddy simulation of cavitating nozzle flow and primary jet break-up. Phys. Fluids 27, 086101 (2015)

    Article  Google Scholar 

  6. Yu, Z., Wang, G., Huang, B.: A cavitation model for computations of unsteady cavitating flows. Acta. Mech. Sin. 32, 273–283 (2016)

    Article  MathSciNet  Google Scholar 

  7. Wei, Y., Tseng, C., Wang, G.: Turbulence and cavitation models for time-dependent turbulent cavitating flows. Acta. Mech. Sin. 27, 473–487 (2011)

    Article  Google Scholar 

  8. Arndt, R.E.A.: Cavitation in vortical flows. Annu. Rev. Fluid Mech. 34, 143–175 (2002)

    Article  MathSciNet  Google Scholar 

  9. Ganesh, H., Mäkiharju, S.A., Ceccio, S.L.: Bubbly shock propagation as a mechanism for sheet-to-cloud transition of partial cavities. J. Fluid Mech. 802, 37–78 (2016)

    Article  MathSciNet  Google Scholar 

  10. Hao, J.F., Zhang, M.D., Huang, X.: The influence of surface roughness on cloud cavitation flow around hydrofoils. Acta. Mech. Sin. 34, 10–21 (2018)

    Article  Google Scholar 

  11. Franc, J.P., Michel, J.M.: Fundamentals of Cavitation. Springer Science & Business Media, New York (2005)

    MATH  Google Scholar 

  12. Kubota, A., Kato, H., Yamaguchi, H.: A new modeling of cavitating flows—a numerical study of unsteady cavitation on a hydrofoil section. J. Fluid Mech. 240, 59–96 (1992)

    Article  Google Scholar 

  13. Gopalan, S., Katz, J.: Flow structure and modeling issues in the closure region of attached cavitation. Phys. Fluids 12, 895–911 (2000)

    Article  Google Scholar 

  14. Wosnik, M., Qin, Q., Arndt, R.E.: Identification of large scale structures in the wake of cavitating hydrofoils using LES and time-resolved PIV. In: Proceedings of 26th symposium on naval hydrodynamics, Rome, September 17–22 (2006)

  15. Cheng, H.Y., Bai, X.R., Long, X.P., et al.: Large eddy simulation of the tip-leakage cavitating flow with an insight on how cavitation influences vorticity and turbulence. Appl. Math. Model. 77, 788–809 (2020)

    Article  MathSciNet  Google Scholar 

  16. Long, Y., Long, X.P., Ji, B., et al.: Verification and validation of large eddy simulation of attached cavitating flow around a Clark-Y hydrofoil. Int. J. Multiphase Flow 115, 93–107 (2019)

    Article  MathSciNet  Google Scholar 

  17. Budich, B., Schmidt, S.J., Adams, N.A.: Numerical simulation and analysis of condensation shocks in cavitating flow. J. Fluid Mech. 838, 759–813 (2018)

    Article  MathSciNet  Google Scholar 

  18. Dittakavi, N., Chunekar, A.R., Frankel, S.H.: Large eddy simulation of turbulent-cavitation interactions in a venturi nozzle. ASME J. Fluids Eng. 132, 121301 (2010)

    Article  Google Scholar 

  19. Long, X., Zuo, D., Cheng, H., et al.: Large eddy simulation of the transient cavitating vortical flow in a jet pump with special emphasis on the unstable limited operation stage. J. Hydrodyn. Ser. B 32, 345–360 (2020)

    Article  Google Scholar 

  20. Sakamoto, H., Haniu, H.: A study on vortex shedding from spheres in a uniform flow. ASME J. Fluids Eng. 112, 386–392 (1990)

    Article  Google Scholar 

  21. Johnson, T.A., Patel, V.C.: Flow past a sphere up to a Reynolds number of 300. J. Fluid Mech. 378, 19–70 (1999)

    Article  Google Scholar 

  22. Eshbal, L., Rinsky, V., David, T., et al.: Measurement of vortex shedding in the wake of a sphere at. J. Fluid Mech. 870, 290–315 (2019)

    Article  Google Scholar 

  23. Cheng, X., Shao, X., Zhang, L.: The characteristics of unsteady cavitation around a sphere. Phys. Fluids 9821, 042103 (2019)

    Google Scholar 

  24. Pendar, M.R., Roohi, E.: Cavitation characteristics around a sphere: an LES investigation. Int. J. Multiphase Flow 98, 1–23 (2018)

    Article  MathSciNet  Google Scholar 

  25. Kolahan, A., Roohi, E., Pendar, M.: Wavelet analysis and frequency spectrum of cloud cavitation around a sphere. Ocean Eng. 182, 235–247 (2019)

    Article  Google Scholar 

  26. Germano, M., Piomelli, U., Moin, P., et al.: A dynamic subgrid—scale eddy viscosity model. Phys. Fluids 3, 1760–1765 (1991)

    Article  Google Scholar 

  27. Lilly, D.K.: A proposed modification of the Germano subgrid—scale closure method. Phys. Fluids 4, 633–635 (1992)

    Article  Google Scholar 

  28. Zwart, P.J., Gerber, A.G., Belamri, T.: A two-phase flow model for predicting cavitation dynamics. In: Proceedings of ICMF 2004 International Conference on Multiphase Flow, Yokohama, June 1–3 (2004)

  29. Wu, Q., Huang, B., Wang, G., et al.: The transient characteristics of cloud cavitating flow over a flexible hydrofoil. Int. J. Multiphase Flow 99, 162–173 (2018)

    Article  MathSciNet  Google Scholar 

  30. Huang, B., Young, Y.L., Wang, G., et al.: Combined experimental and computational investigation of unsteady structure of sheet/cloud cavitation. ASME J. Fluids Eng. 135, 071301 (2013)

    Article  Google Scholar 

  31. Oberkampf, W.L., Roy, C.J.: Verification and Validation in Scientific Computing. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  32. Brandner, P.A., Walker, G.J., Niekamp, P.N., et al.: Global mode visualisation in cavitating flows. In: Proceedings of 16 h Australasian Fluid Mechanics Conference, Crown Plaza, December 2–7 (2007)

  33. Venning, J.A., Giosio, D.R., Pearce, B.W., et al.: Global mode visualisation in cavitating flows. In: Proceedings of 10th International Symposium on Cavitation, Baltimore, May 14–16 (2018)

  34. Bakic, V., Peric, M.: Vizualization of flow around a sphere for reynolds numbers between 22000 and 400000. Thermophys. Aeromech. 12, 307–315 (2005)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grants 51822903 and 11772239) and the Natural Science Foundation of Hubei Province (Grant 2018CFA010). The numerical calculations were done on the supercomputing system in the Supercomputing Center of Wuhan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Ji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, Y., Long, X. & Ji, B. LES investigation of cavitating flows around a sphere with special emphasis on the cavitation–vortex interactions. Acta Mech. Sin. 36, 1238–1257 (2020). https://doi.org/10.1007/s10409-020-01008-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-020-01008-4

Keywords

Navigation