Skip to main content
Log in

Global cavitation patterns and corresponding hydrodynamics of the hydrofoil with leading edge roughness

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The objective of this paper is to experimentally investigate the cavitation patterns and corresponding hydrodynamics of the hydrofoil with leading edge roughness. The aims are to (1) understand the effect of the leading edge roughness on the hydrodynamic performance, and (2) have a good knowledge of the interaction between the leading edge roughness and the cavitation patterns. Experimental results are indicated for the NACA 66 hydrofoils with and without leading edge roughness at different incidence angles for sub and cavitation conditions. The experiments are conducted in the EPFL high-speed cavitation tunnel (Avellan 2015). The results showed that the leading edge roughness has a significant effect on the hydrodynamic performance at the sub cavitation, suppressing the formation of the incipient cavitation. The lift coefficient of the hydrofoil without leading edge roughness is larger than that of the hydrofoil with leading edge roughness, while for the drag coefficients, the results are contrary for the lift coefficient, and the maximum lift-to-drag ratio angle is delayed for the hydrofoil with leading edge roughness. The leading edge roughness modified the local pressure distribution at the leading edge region, which in turn significantly increased the minimum pressure coefficient, hence the incipient cavitation number of the hydrofoil with leading edge roughness. The formation and evolution of the transient cavity for the cloud cavitation is little affected by the leading edge roughness.

Graphic abstract

The re-entrant jet begins to form at the rear end of the cavity, due to the high reverse pressure gradient and moves toward the leading edge of the hydrofoil, then the cloud cavity gets organized by high vapor fraction and is lifted away from the surface, in which the cavity height (Δh) is larger than the roughness (Ra) and also, there is a distance between the leading edge roughness and re-entrant jet (Δs). Hence the leading edge roughness has a great effect on the leading edge local pressure distribution for the formation of incipient cavitation, while it is inessential for the evolution of the cloud cavitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

u :

Inflow velocity [m/s]

b :

Span lengths [m]

c :

Mean chord [m]

h :

Roughness [m]

Δh :

Cavity height [m]

Δs :

Distance between roughness and re-entrant jet [m]

v :

Fluid kinematic viscosity [m2/s]

Re :

Reynolds number, Re = uc/v

ρ :

Fluid density [kg/m3]

α :

Hydrofoil geometry incidence relative to freestream flow (incidence angle)

α e :

Maximum lift-to-drag ratio angle

α cr :

Stall angle

α 0 :

Zero-lift angle

σ :

Cavitation number

σ i :

Incipient cavitation number

P :

Fluid static pressure [Pa]

P v :

Saturated vapor pressure [Pa]

C l :

Lift coefficient

C d :

Drag coefficient

C m :

Moment coefficient

L :

Hydrodynamic lift [N]

D :

Hydrodynamic drag [N]

M :

Hydrodynamic moment [N]

K :

Lift-to-drag ratio

C p,min :

Minimum pressure coefficient

P i :

Minimum surface pressure at leading edge region [Pa]

References

  1. Ji, B., Bai, X.R., Zhu, Y., et al.: A review of the fundamental investigations of cavitation in hydraulic machinery. Chin J Hydrodyn. 32, 542–550 (2017)

    Google Scholar 

  2. Leclercq, C., Archer, A., Fortes-Patella, R., et al.: Numerical cavitation intensity on a hydrofoil for 3D homogeneous unsteady viscous flows. Int J Fluid Mach Syst. 10, 254–263 (2017). https://doi.org/10.5293/IJFMS.2017.10.3.254

    Article  Google Scholar 

  3. Brennen, C.E.: Cavitation and bubble dynamics homogeneous bubbly flows, pp. 145–181. Cambridge University Press, London (2013)

    Book  Google Scholar 

  4. Wu, Q., Huang, B., Wang, G.Y., et al.: Experimental and numerical investigation of hydroelastic response of a flexible hydrofoil in cavitating flow. Int. J. Multiph. Flow 74, 19–33 (2015). https://doi.org/10.1016/j.ijmultiphaseflow.2015.03.023

    Article  Google Scholar 

  5. Akbarzadeh, P., Akbarzadeh, E.: Hydrodynamic characteristics of blowing and suction on sheet-cavitating flows around hydrofoils. Ocean Eng. 114, 25–36 (2016). https://doi.org/10.1016/j.oceaneng.2016.01.015

    Article  Google Scholar 

  6. Joy, J.A., Mathaiyan, V., Sajjad, M., et al.: Numerical studies on cavitation and surface roughness//key engineering materials. Trans Tech Publications Ltd. 793, 79–84 (2019)

    Google Scholar 

  7. Coutier-Delgosha, O., Devillers, J.F., Leriche, M., et al.: Effect of wall roughness on the dynamics of unsteady cavitation. J. Fluids Eng. 127, 726–733 (2005). https://doi.org/10.1115/1.1949637

    Article  Google Scholar 

  8. Nie, M.X.: Cavitation prevention with roughened surface. J. Hydr. Eng. 127, 878–880 (2001). https://doi.org/10.1061/(ASCE)0733-9429(2001)127:10(878)

    Article  Google Scholar 

  9. Huang, X., Zhang, M.D., Fu, X.N.: Experimental study of coatings’ effect on cavitating flow. J. Ship Mech. 19, 35–42 (2015). https://doi.org/10.3969/j.issn.1007-7294.2015.h1.004

    Article  Google Scholar 

  10. Arndt, R.E.A., Ippen, A.T.: Rough surface effects on cavitation inception. J. Basic Eng. 90, 249 (1968). https://doi.org/10.1115/1.3605086

    Article  Google Scholar 

  11. Billet, M.L., Holl, J.W., Parkin, B.R.: Scale effects on cavitating flows due to surface roughness and laminar separation. AIAA J. 20, 632–637 (1982). https://doi.org/10.2514/3.7935

    Article  Google Scholar 

  12. Franc, J.P., Michel, J.M.: Fundamentals of cavitation. Fluid Mech. Appl. 76 (2005)

  13. Knapp, R.T., Daily, J.W., Hammitt, F.G.: Cavitation. McGraw-Hill (1970)

  14. Esfahanian, V., Akbarzadeh, P.: Numerical investigation on a new local preconditioning method for solving the incompressible inviscid, non-cavitating and cavitating flows. J. Franklin Inst. 348, 1208–1230 (2011). https://doi.org/10.1016/j.jfranklin.2010.01.008

    Article  MathSciNet  MATH  Google Scholar 

  15. Wu, Q., Wang, C.C., Huang, B., et al.: Measurement and prediction of cavitating flow-induced vibrations. Journal of Hydrodynamic. 30, 1064–1071 (2018). https://doi.org/10.1007/s42241-018-0115-5

    Article  Google Scholar 

  16. Iyer, C.O., Ceccio, S.L.: The influence of developed cavitation on the flow of a turbulent shear layer. Phys. Fluids 14, 3414–3431 (2002). https://doi.org/10.1063/1.1501541

    Article  MATH  Google Scholar 

  17. Huang, B., Qiu, S.C., Li, X.B., et al.: A review of transient flow structure and unsteady mechanism of cavitating flow. J. Hydrodyn. 31, 429–444 (2019). https://doi.org/10.1007/s42241-019-0050-0

    Article  Google Scholar 

  18. Franc, J.P., Michel, J.M.: Unsteady attached cavitation on an oscillating hydrofoil. J. Fluid Mech. 193, 171–189 (1988). https://doi.org/10.1017/S0022112088002101

    Article  Google Scholar 

  19. Amromin, E.: Development and validation of computational fluid dynamics models for initial stages of cavitation. J. Fluids Eng. 136, 081–303 (2014). https://doi.org/10.1115/1.4026883

    Article  Google Scholar 

  20. Arakeri, V.H., Acosta, A.J.: Viscous effects in the inception of cavitation on axisymmetric bodies. J. Fluids Eng. (1973). https://doi.org/10.1115/1.3447065

    Article  Google Scholar 

  21. Foeth, E.J., Van, D.C.W.H., Van, T.T., et al.: Time resolved PIV and flow visualization of 3D sheet cavitation. Exp. Fluids 40, 503–513 (2006). https://doi.org/10.1007/s00348-005-0082-9

    Article  Google Scholar 

  22. Esfahanian, V., Akbarzadeh, P., Hejranfar, K.: An improved progressive preconditioning method for steady non-cavitating and sheet-cavitating flows. Int. J. Numer. Meth. Fluids 68, 210–232 (2012). https://doi.org/10.1002/fld.2502

    Article  MathSciNet  MATH  Google Scholar 

  23. Rasthofer, U., Wermelinger, F., Hadijdoukas, P., et al.: Large scale simulation of cloud cavitation collapse. Procedia Comput. Sci. 108, 1763–1772 (2017). https://doi.org/10.1016/j.procs.2017.05.158

    Article  Google Scholar 

  24. Stutz, B., Reboud, J.L.: Two-phase flow structure of sheet cavitation. Phys. Fluids 9, 3678–3686 (1997). https://doi.org/10.1063/1.869505

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, X.B., Wang, G.Y., Zhang, M.D., et al.: Structures of supercavitating multiphase flows. Int. J. Therm. Sci. 47, 1263–1275 (2008). https://doi.org/10.1016/j.ijthermalsci.2007.11.010

    Article  Google Scholar 

  26. Katz, J.: Cavitation phenomena within regions of flow separation. J. Fluid Mech. 140, 397–436 (1984). https://doi.org/10.1017/S0022112084000665

    Article  Google Scholar 

  27. Shen, Y.T., Peterson, F.B.: Unsteady cavitation on an oscillating hydrofoil. In: Proceedings of the 12th Symposium on Naval Hydrodynamics, National Academy of Sciences, Washington, D.C. (1978)

  28. Shen, Y.T., Peterson, F. B.: The influence of hydrofoil oscillation on boundary layer transition and cavitation noise. In: Proceedings of the 13th Symposium on Naval Hydrodynamics, Shipbuilding Research Association of Japan Tokyo, Japan (1980)

  29. Hart, D.P., Brennen, C.E., Acosta, A.J.: Observations of cavitation on a three-dimensional oscillating hydrofoil. In: Proceedings of the 25th Cavitation and Multiphase Flow Forum, Toronto, Ontario, 49–52 (1990)

  30. Knapp, R.T.: Recent investigations of the mechanics of cavitation and cavitation damage. J. Tribol. Trans. ASME. 77, 1045–1054 (1955)

    Google Scholar 

  31. Huang, B., Zhao, Y., Wang, G.Y.: Large eddy simulation of turbulent vortex-cavitation interactions in transient sheet/cloud cavitating flows. Comput. Fluids 92, 113–124 (2014). https://doi.org/10.1016/j.compfluid.2013.12.024

    Article  MATH  Google Scholar 

  32. Wu, Q., Huang, B., Wang, G.Y., et al.: The transient characteristics of cloud cavitating flow over a flexible hydrofoil. Int. J. Multiph. Flow 99, 162–173 (2018). https://doi.org/10.1016/j.ijmultiphaseflow.2017.10.006

    Article  MathSciNet  Google Scholar 

  33. Wu, Q., Wang, C.C., Huang, B., et al.: Measurement and prediction of cavitating flow-induced vibrations. J. Hydrodyn. 30, 1064–1071 (2018). https://doi.org/10.1007/s42241-018-0115-5

    Article  Google Scholar 

  34. Ji, B., Luo, X.W., Arndt, R.E.A., et al.: Large eddy simulation and theoretical investigations of the transient cavitating vortical flow structure around a NACA 66 hydrofoil. Int. J. Multiph. Flow 68, 121–134 (2015). https://doi.org/10.1016/j.ijmultiphaseflow.2014.10.008

    Article  MathSciNet  Google Scholar 

  35. Ji, B., Long, Y., Long, X.P., et al.: Large eddy simulation of turbulent attached cavitating flow with special emphasis on large scale structures of the hydrofoil wake and turbulence-cavita-tion interactions. J. Hydrodyn. 29, 27–39 (2017). https://doi.org/10.1016/S1001-6058(16)60715-1

    Article  Google Scholar 

  36. De La Torre, O., Escaler, X., Egusquiza, E., et al.: Experimental investigation of added mass effects on a hydrofoil under cavitation conditions. J. Fluids Struct. 39, 173–187 (2013). https://doi.org/10.1016/j.jfluidstructs.2013.01.008

    Article  Google Scholar 

  37. Asnaghi, A., Svennberg, U., Gustafsson, R., et al.: Roughness effects on the tip vortex strength and cavitation inception. In: Sixth International Symposium on Marine Propulsors, SMP19, Rome, Italy (2019)

  38. Liang, C., He, K.J., Shuai, W.: Numerical investigation of diesel nozzle wall roughness effects on cavitation. Mach. Design Manuf. 8, 7 (2017). https://doi.org/10.19356/j.cnki.1001-3997.2017.08.006

    Article  Google Scholar 

  39. Yao, Z.F., Yang, M., Xiao, R.F., et al.: Influence of wall roughness on the static performance and pressure fluctuation characteristics of a double-suction centrifugal pump. Proc. Inst. Mech. Eng A 232, 826–840 (2018). https://doi.org/10.1177/0957650918757246

    Article  Google Scholar 

  40. Asnaghi, A., Svennberg, U., Gustafsson, R., et al.: Roughness effects on the tip vortex strength and cavitation inception. In: Sixth International Symposium on Marine Propulsors: SMP19, Rome, Italy (2019)

  41. Echouchene, F., Belmabrouk, H., Le Penven, L., et al.: Numerical simulation of wall roughness effects in cavitating flow. Int. J. Heat Fluid Flow 32, 1068–1075 (2011). https://doi.org/10.1016/j.ijheatfluidflow.2011.05.010

    Article  Google Scholar 

  42. Hao, J.F., Zhang, M.D., Huang, X.: The influence of surface roughness on cloud cavitation flow around hydrofoils. Acta. Mech. Sin. 34, 10–21 (2018). https://doi.org/10.1007/s10409-017-0689-0

    Article  Google Scholar 

  43. Churkin, S.A., Pervunin, K.S., Kravtsova, A.Y., et al.: Cavitation on NACA 0015 hydrofoils with different wall roughness: high-speed visualization of the surface texture effects. J. Visual. 19, 587–590 (2016). https://doi.org/10.1007/s12650-016-0355-9

    Article  Google Scholar 

  44. Zhang, Q., Lee, S.W., Ligrani, P.M.: Effects of surface roughness and freestream turbulence on the wake turbulence structure of a symmetric airfoil. Phys. Fluids 16, 2044–2053 (2004). https://doi.org/10.1063/1.1736676

    Article  MATH  Google Scholar 

  45. Katz, J., Galdo, J.B.: Effect of roughness on rollup of tip vortices on a rectangular hydrofoil. J. Aircraft. 26, 247–253 (1989). https://doi.org/10.2514/3.45753

    Article  Google Scholar 

  46. MacDonald, M., Hutchins, N., Chung, D.: Roughness effects in turbulent forced convection. J. Fluid Mech. 861, 138–162 (2019). https://doi.org/10.1017/jfm.2018.900

    Article  MathSciNet  MATH  Google Scholar 

  47. Di-Cicca, G.M., Morvan, P., Onorato, M.: Turbulence investigation in the roughness sub-layer of a near wall flow. Environ. Fluid Mech. 18, 1413–1433 (2018). https://doi.org/10.1007/s10652-018-9600-1

    Article  Google Scholar 

  48. Lang, A.W., Bradshaw, M.T., Smith, J.A., et al.: Movable shark scales act as a passive dynamic micro-roughness to control flow separation. Bioinspir. Biomimet. 9, 036017 (2014). https://doi.org/10.1088/1748-3182/9/3/036017

    Article  Google Scholar 

  49. Delafin, P.L., Deniset, F., Astolfi, J.A.: Effect of the laminar separation bubble induced transition on the hydrodynamic performance of a hydrofoil. Eur. J. Mech. 46, 190–200 (2014). https://doi.org/10.1016/j.euromechflu.2014.03.013

    Article  MATH  Google Scholar 

  50. Ausoni, P., Farhat, M., Escaler, X., et al.: Cavitation influence on von Kármán vortex shedding and induced hydrofoil vibrations. J. Fluids Eng. 129, 966–973 (2007). https://doi.org/10.1115/1.2746907

    Article  Google Scholar 

  51. Avellan, F., Henry, P., Rhyming, I.: A new high speed cavitation tunnel for cavitation studies in hydraulic machinery. Proc. Int. Cavit. Res. Facil. Techn. 57, 49–60 (1987)

    Google Scholar 

  52. Zobeiri, A.: Effect of hydrofoil trailing edge geometry on the wake dynamics. École Polytechnique Fédérale de Lausanne (2012). https://doi.org/10.5075/epfl-thesis-5218

    Article  Google Scholar 

  53. Huang, B., Ducoin, A., Young, Y.L.: Physical and numerical investigation of cavitating flows around a pitching hydrofoil. Phys. Fluids 25, 102109 (2013). https://doi.org/10.1063/1.4825156

    Article  Google Scholar 

  54. Dai, Y.J., Zhang, Y.Y., Huang, D.G.: Numerical study of the impact of hydrofoil surface roughness on cavitation suppression. J. Eng. Thermophys. 33, 770–773 (2012)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the great help of Dr. Mohamed Farhat (EPFL-LMH) and the support by the National Natural Science Foundation of China (Grant Nos: 51909002, 51839001, and 91752105), the Fundamental Research Funds for the Central Universities, and the Open Fund for Key Laboratory of Fluid and Power Machinery, Ministry of Education (Grant Nos: szjj2018-124 and szjj2019-024).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qin Wu or Taotao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Liu, Y., Wu, Q. et al. Global cavitation patterns and corresponding hydrodynamics of the hydrofoil with leading edge roughness. Acta Mech. Sin. 36, 1202–1214 (2020). https://doi.org/10.1007/s10409-020-00992-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-020-00992-x

Keywords

Navigation