Skip to main content
Log in

Biomechanics in plant resistance to drought

  • Review Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

During drought, plant functions at multi-levels (i.e., tissue, cellular and molecular) are adjustable with the change of water condition, which is known as drought resistance. Various biological, chemical and physical mechanisms have been found in plant drought resistance, among which the role of physical cues (especially mechanics) has attracted significantly increasing attention. Recent studies have shown that mechanics is one of the fundamental factors that control the responses and self-adaptation from tissue to molecular levels in plant when the external conditions changes. In the review, we examine how the factor of mechanics acts on the multi-level plant functions under drought stress, including water transport, tissue deformation, cell growth, cell movements, molecules interaction and signal pathway.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

Stamens:

The pollen-producing reproductive organ of a flower

Xylem:

One transport tissue in vascular plants that can transport water and some nutrients from the roots to leaves

Vessels:

A system in xylem that can conduct water and consists of a column of cells

Tracheid:

Elongated cells in the xylem that can transport water and mineral salts

Conduits:

Cells that can conduct water in trees

Sapwood:

The newest part of xylem, and contains living ray cells

Xylem sap:

Water flowing in xylem conduits

Phloem:

The living cells in vascular plants that consists of sieve tubes, parenchyma cells and so on, and can also transport sugars from the leaves to other parts, like roots

Cavitation:

Bubbles are formed in liquid phase under relatively low pressure and break the water transporting in trees

Transpiration:

Water evaporation through a plant aboveground parts, such as stems, leaves and flowers

Transpiration pull:

The force driving water upward from the root to leaves especially from the stomata

Trichome:

Epidermal outgrowths produced into an elongate hair-like structure

Pollen grains:

Male microgametophytes of seed plants

Pollen tube:

Germinate from pollen grains to acts as a conduit to transport the male

Cytoplasmic streaming:

Directed flow of cytosol and organelles in fungal and plant cells

Stomata:

A pore surrounded by a pair of guard cells is used to control gas exchange and water budget

Guard cells:

Specialized cells in the epidermis of leaves, stems and other organs form the stomata

Cytoskeleton:

Epidermal outgrowths produced into an elongate hair-like structure

Arabinogalactan-proteins:

A class of glycoproteins in periphery of plant cells

Extracellular matrix:

Extracellular substance secreted by cells that provides structural, biophysical and biochemical support to the surrounding cells

Actin filament bundles:

Filamentous structures in the cytoplasm of eukaryotic cells and form part of the cytoskeleton

References

  1. Gupta, A., Rico-Medina, A., Caño-Delgado, A.I.: The physiology of plant responses to drought. Science 368, 266–269 (2020)

    Google Scholar 

  2. Rothschild, L.J., Mancinelli, R.L.: Life in extreme environments. Nature 409(6823), 1092–1101 (2001)

    Google Scholar 

  3. McDowell, N., Pockman, W.T., Allen, C.D., et al.: Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol. 178, 719–739 (2008)

    Google Scholar 

  4. Fujita, M., Fujita, Y., Noutoshi, Y., et al.: Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr. Opin. Plant Biol. 9, 436–442 (2006)

    Google Scholar 

  5. Ulrike, B.: Plant life in extreme environments: how do you improve drought tolerance? Front. Plant Sci. 9, 543 (2018)

    Google Scholar 

  6. Pei, Z.M., Ghassemian, M., Kwak, C.M., et al.: Role of farnesyltransferase in ABA regulation of guard cell anion channels and plant water loss. Science 282, 287 (1998)

    Google Scholar 

  7. Martinière, A., Lavagi, I., Nageswaran, G., et al.: Cell wall constrains lateral diffusion of plant plasma-membrane proteins. Proc. Natl. Acad. Sci. 109, 12805–12810 (2012)

    Google Scholar 

  8. Katifori, E., Alben, S., Cerda, E., et al.: Foldable structures and the natural design of pollen grains. Proc. Natl. Acad. Sci. 107, 7635–7639 (2010)

    Google Scholar 

  9. Li, B., Jia, F., Cao, Y.P., et al.: Surface wrinkling patterns on a core-shell soft sphere. Phys. Rev. Lett. 106, 234301 (2011)

    Google Scholar 

  10. Campàs, O., Mahadevan, L.: Shape and dynamics of tip-growing cells. Curr. Biol. 19, 2102–2107 (2009)

    Google Scholar 

  11. Pei, Z.M., Murata, Y., Benning, G., et al.: Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406, 731–734 (2000)

    Google Scholar 

  12. Shenoy, V., Freund, L.: Growth and shape stability of a biological membrane adhesion complex in the diffusion-mediated regime. Proc. Natl. Acad. Sci. U. S. A. 102, 3213–3218 (2005)

    Google Scholar 

  13. Yan, A., Xu, G., Yang, Z.B.: Calcium participates in feedback regulation of the oscillating ROP1 Rho GTPase in pollen tubes. Proc. Natl. Acad. Sci. 106, 22002–22007 (2009)

    Google Scholar 

  14. Franks, P.: A study of stomatal mechanics using the cell pressure probe. Plant, Cell Environ. 21, 94–100 (1998)

    Google Scholar 

  15. Pierson, E.S., Miller, D.D., Callaham, D.A., et al.: Pollen tube growth is coupled to the extracellular calcium ion flux and the intracellular calcium gradient: effect of BAPTA-type buffers and hypertonic media. Plant Cell 6, 1815–1828 (1994)

    Google Scholar 

  16. Zhou, L.H., Weizbauer, R.A., Singamaneni, S., et al.: Structures formed by a cell membrane-associated arabinogalactan-protein on graphite or mica alone and with Yariv phenylglycosides. Ann. Bot. 114(6), 1385–1397 (2014)

    Google Scholar 

  17. Zhu, J.K.: Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53, 247 (2002)

    Google Scholar 

  18. Munns, R.: Comparative physiology of salt and water stress. Plant, Cell Environ. 25, 239–250 (2002)

    Google Scholar 

  19. Xiong, L., Schumaker, K.S., Zhu, J.-K.: Cell signaling during cold, drought, and salt stress. Plant Cell 14, S165–S183 (2002)

    Google Scholar 

  20. Dinneny, J.R.: Developmental Responses to Water and Salinity in Root Systems. Annu. Rev. Cell Dev. Bi 35(1), 1–19 (2019)

    Google Scholar 

  21. Sharma, V., Balaji, R., Krishnan, V.: Fog-harvesting properties of Dryopteris marginata: role of Interscalar microchannels in water-channeling. Biomimetics 3(2), 7 (2018)

    Google Scholar 

  22. Robbins, N.E., Dinneny, J.R.: Growth is required for perception of water availability to pattern root branches in plants. Proc. Natl. Acad. Sci. U. S. A. 115(4), 822–831 (2018)

    Google Scholar 

  23. Ju, J., Bai, H., Zheng, Y., et al.: A multi-structural and multi-functional integrated fog collection system in cactus. Nat. Commun. 3, 1247 (2012)

    Google Scholar 

  24. Scharwies, J.D., Dinneny, J.R.: Water transport, perception, and response in plants. J. Plant. Res. 132(3), 311–324 (2019)

    Google Scholar 

  25. Cochard, H.: Cavitation in trees. C R Phys. 7, 1018–1026 (2006)

    Google Scholar 

  26. Mercury, L., Tardy, Y.: Negative pressure of stretched liquid water. Geochemistry of soil capillaries. Geochim. Cosmochim. Ac. 65, 3391–3408 (2001)

    Google Scholar 

  27. Hölttä, T., Sperry, J.: Plant water transport and cavitation. In: Transport and Reactivity of Solutions in Confined Hydrosystems, pp. 173–181. Springer (2014)

  28. Hudson, P.J., Limousin, J.M., Krofcheck, D.J., et al.: Impacts of long-term precipitation manipulation on hydraulic architecture and xylem anatomy of pinon and juniper in Southwest USA. Plant, Cell Environ. 41(2), 421–435 (2017)

    Google Scholar 

  29. Chaves, M.M., Maroco, J.P., Pereira, J.S.: Understanding plant responses to drought—from genes to the whole plant. Funct. Plant Biol. 30, 239–264 (2003)

    Google Scholar 

  30. Cochard, H., Badel, E., Herbette, S., et al.: Methods for measuring plant vulnerability to cavitation: a critical review. J. Exp. Bot. 64, 4779–4791 (2013)

    Google Scholar 

  31. Perämäki, M.: A Physical Analysis of Sap Flow Dynamics in Trees. Martti Perämäki (2005)

  32. Angeles, G., Bond, B., Boyer, J., et al.: The cohesion-tension theory. New Phytol. 163, 451–452 (2004)

    Google Scholar 

  33. Siau, J.F.: Transport Processes in Wood. Springer, Berlin (2012)

    Google Scholar 

  34. Irvine, J., Grace, J.: Continuous measurements of water tensions in the xylem of trees based on the elastic properties of wood. Planta 202, 455–461 (1997)

    Google Scholar 

  35. Briggs, L.J.: Limiting negative pressure of water. J. Appl. Phys. 21(7), 721–722 (1950)

    Google Scholar 

  36. Cochard, H., Barigah, T., Herbert, E., et al.: Cavitation in plants at low temperature: is sap transport limited by the tensile strength of water as expected from Briggs’ Z-tube experiment? New Phytol. 173, 571–575 (2007)

    Google Scholar 

  37. Herbert, E., Caupin, F.: The limit of metastability of water under tension: theories and experiments. J. Phys.: Condens. Matter 17, S3597 (2005)

    Google Scholar 

  38. Pickard, W.F.: The ascent of sap in plants. Prog. Biophys. Mol. Bio. 37, 181–229 (1981)

    Google Scholar 

  39. Cochard, H., Cruiziat, P., Tyree, M.T.: Use of positive pressures to establish vulnerability curves further support for the air-seeding hypothesis and implications for pressure-volume analysis. Plant Physiol. 100, 205–209 (1992)

    Google Scholar 

  40. Hacke, U.G., Sperry, J.S., Pittermann, J.: Analysis of circular bordered pit function II. Gymnosperm tracheids with torus-margo pit membranes. Am. J. Bot. 91, 386–400 (2004)

    Google Scholar 

  41. Hölttä, T., Vesala, T., Perämäki, M., et al.: Relationships between embolism, stem water tension, and diameter changes. J. Theor. Biol. 215, 23 (2002)

    Google Scholar 

  42. Blander, M.: Bubble nucleation in liquids. Adv. Colloid Interfac. 10, 1–32 (1979)

    Google Scholar 

  43. Sperry, J.S., Tyree, M.T.: Mechanism of water stress-induced xylem embolism. Plant Physiol. 88, 581–587 (1988)

    Google Scholar 

  44. Tyree, M.T., Zimmermann, M.H.: Xylem Structure and the Ascent of Sap. Springer, Berlin (2013)

    Google Scholar 

  45. Tyree, M.T., Sperry, J.S.: Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress? Answers from a model. Plant Physiol. 88, 574–580 (1988)

    Google Scholar 

  46. Holbrook, N.M., Zwieniecki, M.A.: Embolism repair and xylem tension: do we need a miracle? Plant Physiol. 120, 7–10 (1999)

    Google Scholar 

  47. Brodribb, T.J., Cochard, H.: Hydraulic failure defines the recovery and point of death in water-stressed conifers. Plant Physiol. 149, 575–584 (2009)

    Google Scholar 

  48. Choat, B., Nolf, M., Lopez, R., et al.: Non-invasive imaging shows no evidence of embolism repair after drought in tree species of two genera. Tree Physiol. 39, 113–121 (2019)

    Google Scholar 

  49. Zwieniecki, M.A., Holbrook, N.M.: Confronting Maxwell’s demon: biophysics of xylem embolism repair. Trends Plant Sci. 14, 530–534 (2009)

    Google Scholar 

  50. Tyree, M.T., Salleo, S., Nardini, A., et al.: Refilling of embolized vessels in young stems of laurel. Do we need a new paradigm? Plant Physiol. 120, 11–22 (1999)

    Google Scholar 

  51. McCully, M.E.: Root xylem embolisms and refilling. Relation to water potentials of soil, roots, and leaves, and osmotic potentials of root xylem sap. Plant Physiol. 119, 1001–1008 (1999)

    Google Scholar 

  52. Canny, M.: Applications of the compensating pressure theory of water transport. Am. J. Bot. 85, 897–897 (1998)

    Google Scholar 

  53. Comstock, J.P.: Why Canny’s theory doesn’t hold water. Am. J. Bot. 86, 1077–1081 (1999)

    Google Scholar 

  54. Salleo, S., Trifilo, P., Gullo, M.A.: Phloem as a possible major determinant of rapid cavitation reversal in stems of Laurus nobilis (laurel). Funct. Plant Biol. 33, 1063–1074 (2006)

    Google Scholar 

  55. Nardini, A., Gullo, M.A.L., Salleo, S.: Refilling embolized xylem conduits: is it a matter of phloem unloading? Plant Sci. 180, 604–611 (2011)

    Google Scholar 

  56. Salleo, S., Gullo, M., Paoli, D., et al.: Xylem recovery from cavitation-induced embolism in young plants of Laurus nobilis: a possible mechanism. New Phytol. 132, 47–56 (1996)

    Google Scholar 

  57. Milburn, J.A.: Sap ascent in vascular plants: challengers to the cohesion theory ignore the significance of immature xylem and the recycling of Münch water. Ann. Bot. 78, 399–407 (1996)

    Google Scholar 

  58. Vesala, T., Hölttä, T., Perämäki, M., et al.: Refilling of a hydraulically isolated embolized xylem vessel: model calculations. Ann. Bot. 91, 419–428 (2003)

    Google Scholar 

  59. Payvandi, S., Daly, K.R., Zygalakis, K.C., et al.: Mathematical modelling of the Phloem: the importance of diffusion on sugar transport at osmotic equilibrium. B. Math. Biol. 76, 2834–2865 (2014)

    MathSciNet  MATH  Google Scholar 

  60. Van Bel, A.J.: Xylem-phloem exchange via the rays: the undervalued route of transport. J. Exp. Bot. 41, 631–644 (1990)

    Google Scholar 

  61. Dainty, J.: Water relations of plant cells. Adv. Bot. Res 1(4), 279–326 (1963)

    Google Scholar 

  62. Siddique, M.R.B., Hamid, A., Islam, M.S.: Drought stress effects on water relations of wheat. Bot. Bull. Acad. Sinica 41(1), 35–39 (2000)

    Google Scholar 

  63. Liang, H., Mahadevan, L.: Growth, geometry, and mechanics of a blooming lily. Proc. Natl. Acad. Sci. U. S. A. 108, 5516 (2011)

    Google Scholar 

  64. Xiao, H., Chen, X.: Modeling and simulation of curled dry leaves. Soft Matter 7(22), 10794 (2011)

    Google Scholar 

  65. Forterre, Y.: Slow, fast and furious: understanding the physics of plant movements. J. Exp. Bot. 64, 4745–4760 (2013)

    Google Scholar 

  66. Noblin, X., Rojas, N., Westbrook, J., et al.: The fern sporangium: a unique catapult. Science 335, 1322 (2012)

    Google Scholar 

  67. Forterre, Y., Skotheim, J.M., Dumais, J., et al.: How the Venus flytrap snaps. Nature 433, 421–425 (2005)

    Google Scholar 

  68. Skotheim, J.M., Mahadevan, L.: Physical limits and design principles for plant and fungal movements. Science 308, 1308–1310 (2005)

    Google Scholar 

  69. Swaine, M., Beer, T.: Explosive seed dispersal in Hura crepitans L. (Euphorbiaceae). New Phytol. 78, 695–708 (1977)

    Google Scholar 

  70. Gibson, L.J.: The hierarchical structure and mechanics of plant materials. J. R. Soc. Interface 9, 2749–2766 (2012)

    Google Scholar 

  71. Van Der Burgt, X.M.: Explosive seed dispersal of the rainforest tree Tetraberlinia moreliana (Leguminosae-Caesalpinioideae) in Gabon. J. Trop. Ecol. 13, 145–151 (1997)

    Google Scholar 

  72. Schuppler, U., He, P.H., Munns, J.R.: Effect of water stress on cell division and cell-division-cycle 2-like cell-cycle kinase activity in wheat leaves. Plant Physiol. 117(2), 667–678 (1998)

    Google Scholar 

  73. Farooq, M., Wahid, A., Kobayashi, N., et al.: Plant drought stress: effects, mechanisms and management. Agron. Sustain. Dev. 29(1), 185–212 (2009)

    Google Scholar 

  74. Kavar, T., Maras, M., Marjetka, K., et al.: Identification of genes involved in the response of leaves of Phaseolus vulgaris to drought stress. Mol. Breeding 21(2), 159–172 (2008)

    Google Scholar 

  75. Suresh, S.: Biomechanics and biophysics of cancer cells. Acta Biomater. 3, 413–438 (2007)

    MathSciNet  Google Scholar 

  76. Amir, A., Babaeipour, F., McIntosh, D.B., et al.: Bending forces plastically deform growing bacterial cell walls. Proc. Natl. Acad. Sci. U. S. A. 111, 5778–5782 (2014)

    Google Scholar 

  77. Jiang, H., Sun, S.X.: Morphology, growth, and size limit of bacterial cells. Phys. Rev. Lett. 105, 028101 (2010)

    Google Scholar 

  78. Geitmann, A., Ortega, J.K.E.: Mechanics and modeling of plant cell growth. Trends Plant Sci. 14(9), 478 (2009)

    Google Scholar 

  79. Lockhart, J.A.: An analysis of irreversible plant cell elongation. J. Theor. Biol. 8, 264–275 (1965)

    Google Scholar 

  80. Boudaoud, A.: Growth of walled cells: from shells to vesicles. Phys. Rev. Lett. 91, 018104 (2003)

    Google Scholar 

  81. Bosabalidis, A.M., Kofidis, G.: Comparative effects of drought stress on leaf anatomy of two olive cultivars. Plant Sci. 163, 375–379 (2002)

    Google Scholar 

  82. Rojas, E.R., Hotton, S., Dumais, J.: Chemically mediated mechanical expansion of the pollen tube cell wall. Biophys. J. 101, 1844–1853 (2011)

    Google Scholar 

  83. Cosgrove, D.J.: Analysis of the dynamic and steady-state responses of growth rate and turgor pressure to changes in cell parameters. Plant Physiol. 68, 1439–1446 (1981)

    Google Scholar 

  84. Kroeger, J.H., Geitmann, A., Grant, M.: Model for calcium dependent oscillatory growth in pollen tubes. J. Theor. Biol. 253, 363–374 (2008)

    MATH  Google Scholar 

  85. Kroeger, J.H., Daher, F.B., Grant, M., et al.: Microfilament orientation constrains vesicle flow and spatial distribution in growing pollen tubes. Biophys. J. 97, 1822–1831 (2009)

    Google Scholar 

  86. Li, H., Lin, Y., Heath, R.M., et al.: Control of pollen tube tip growth by a Rop GTPase–dependent pathway that leads to tip-localized calcium influx. Plant Cell 11, 1731–1742 (1999)

    Google Scholar 

  87. Kroeger, J.H., Zerzour, R., Geitmann, A.: Regulator or driving force? The role of turgor pressure in oscillatory plant cell growth. PLoS ONE 6, e18549 (2011)

    Google Scholar 

  88. Kroeger, J., Geitmann, A.: Modeling pollen tube growth. Plant Signal. Behav. 6, 1828–1830 (2011)

    Google Scholar 

  89. Pietruszka, M.: Pressure–induced cell wall instability and growth oscillations in pollen tubes. PLoS ONE 8, e75803 (2013)

    Google Scholar 

  90. Wu, H., Sharpe, P.J.H., Spence, R.D.: Stomatal mechanics. III. Geometric interpretation of the mechanical advantage. Plant, Cell Environ. 8, 269–274 (1985)

    Google Scholar 

  91. Wodehouse, R.P.: Pollen grains. Their structure, identification and significance in science and medicine. J. Nerv. Ment. Dis. 86, 104 (1937)

    Google Scholar 

  92. Buckley, T.N.: How do stomata respond to water status? New Phytol. 224(1), 1–16 (2019)

    Google Scholar 

  93. Qi, J., Song, C.P., Wang, B., et al.: ROS signaling and stomatal movement in plant responses to drought stress and pathogen attack. J. Integr. Plant Biol. 60(9), 805–826 (2018)

    Google Scholar 

  94. Papanatsiou, M., Petersen, J., Henderson, L.: Optogenetic manipulation of stomatal kinetics improves carbon assimilation, water use, and growth. Science 363(6434), 1456–1459 (2019)

    Google Scholar 

  95. Woolfenden, H.C., Bourdais, G., Kopischke, M., et al.: A computational approach for inferring the cell wall properties that govern guard cell dynamics. Plant J. 92(1), 5–18 (2017)

    Google Scholar 

  96. Hetherington, A.M.: Guard cell signaling. Cell 107, 711–714 (2001)

    Google Scholar 

  97. Franks, P.J., Farquhar, G.D.: The mechanical diversity of stomata and its significance in gas-exchange control. Plant Physiol. 143, 78–87 (2007)

    Google Scholar 

  98. Aylor, D.E., Krikorian, A.D.: Stomatal mechanics. Am. J. Bot. 60(2): 163–171 (1973)

    Google Scholar 

  99. Raschke, K., Dickerson, M.: Changes in shape and volume of guard cells during stomatal movement. Plant Res MSU AEC Plant Res Lab Mich State Univ (1973)

  100. Flory, P.: Principles of Polymer Chemistry. Cornell University Press, Ithaca (1953)

    Google Scholar 

  101. Wu, H.I., Sharpe, P.J.: Stomatal mechanics II: material properties of guard cell walls. Plant, Cell Environ. 2, 235–244 (1979)

    Google Scholar 

  102. Burgert, I., Fratzl, P.: Mechanics of the expanding cell wall. The Expanding Cell, pp. 191–215. Springer, Berlin (2007)

    Google Scholar 

  103. Ziegenspeck, H.: 9 Die Micellierung der Turgeszenzmechanismen. I. Die Spaltoffnungen (mit phylogenetischen Ausblicken). Bot. Arch. 39, 268–309 (1938)

    Google Scholar 

  104. Ray, J., Manning, G.S.: Formation of loose clusters in polyelectrolyte solutions. Macromolecules 33, 2901–2908 (2000)

    Google Scholar 

  105. Ray, J., Manning, G.S.: An attractive force between two rodlike polyions mediated by the sharing of condensed counterions. Langmuir 10, 2450–2461 (1994)

    Google Scholar 

  106. Mustacich, R., Ware, B.: A study of protoplasmic streaming in Nitella by laser Doppler spectroscopy. Biophys. J. 16, 373 (1976)

    Google Scholar 

  107. Liu, S., Liu, H., Feng, S.S., et al.: Fountain Streaming Contributes to Fast Tip-Growth through Regulating the Gradients of Turgor Pressure and Concentration in Pollen Tubes. Soft Matter 13(16), 2919–2927 (2017)

    Google Scholar 

  108. Woodhouse, F.G., Goldstein, R.E.: Cytoplasmic streaming in plant cells emerges naturally by microfilament self-organization. Proc. Natl. Acad. Sci. U. S. A. 110, 14132–14137 (2013)

    Google Scholar 

  109. Goldstein, R.E., Tuval, I., van de Meent, J.W.: Microfluidics of cytoplasmic streaming and its implications for intracellular transport. Proc. Natl. Acad. Sci. U. S. A. 105, 3663–3667 (2008)

    Google Scholar 

  110. Voit, E.O.: Computational Analysis of Biochemical Systems: a Practical Guide for Biochemists and Molecular Biologists. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  111. Bower, J.M., Bolouri, H.: Computational Modeling of Genetic and Biochemical Networks. MIT press, Cambridge (2004)

    Google Scholar 

  112. Yamaguchi-Shinozaki, K., Shinozaki, K.: Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters. Trends Plant Sci. 10, 88–94 (2005)

    Google Scholar 

  113. Osakabe, Y., Osakabe, K., Shinozaki, K., et al.: Response of plants to water stress. Front. Plant Sci. 5, 86 (2014)

    Google Scholar 

  114. Li, S., Assmann, S.M., Albert, R.: Predicting essential components of signal transduction networks: a dynamic model of guard cell abscisic acid signaling. PLoS Biol. 4, e312 (2006)

    Google Scholar 

  115. Moulia, B.: Plant biomechanics and mechanobiology are convergent paths to flourishing interdisciplinary research. J. Exp. Bot. 64(15), 4617–4633 (2013)

    Google Scholar 

  116. Zhou, L.H., Liu, S., Wang, P., et al.: The Arabidopsis trichome is an active mechanosensory switch. Plant, Cell Environ. 40(5), 611–621 (2017)

    Google Scholar 

  117. Liu, H., Liu, S., Jiao, J., et al.: Trichomes as a natural biophysical barrier for plants and their bioinspired applications. Soft Matter 13(30), 5096–5106 (2017)

    Google Scholar 

  118. Liu, S., Jiao, J., Lu, T., et al.: Arabidopsis leaf trichomes as acoustic antennae. Biophys. J. 113(9), 2068–2076 (2017)

    Google Scholar 

  119. Liu, H., Zhou, L., Jiao, J., et al.: Gradient mechanical properties facilitate Arabidopsis trichome as mechanosensor. ACS Appl. Mater. Inter. 8(15), 9755–9761 (2016)

    Google Scholar 

  120. Geitmann, A., Gril, J.: Plant Biomechanics. Springer, Cham (2018)

    Google Scholar 

  121. Bai, F., Wu, J., Gong, G., et al.: Biomimetic “Cactus Spine” with hierarchical groove structure for efficient fog collection. Adv. Sci. 2(7), 1500047 (2015)

    Google Scholar 

  122. Crawford, R., Murphy, T.E., Berberoglu, H., et al.: Pumpless evaporative cooling of actively heated surfaces. Energ. Buildings 62, 217–221 (2013)

    Google Scholar 

  123. Li, J., Liu, C., Xu, Z., et al.: A bio-inspired micropump based on stomatal transpiration in plants. Lab Chip 11, 2785–2789 (2011)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grants 11532009, 11972280, 11972185, 11902155, and 11902245), the Natural Science Foundation of Jiangsu Province (Grant BK20190382), the foundation of “Jiangsu Provincial Key Laboratory of Bionic Functional Materials”, the Foundation for the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Open Fund of the State Key Laboratory of Mechanics, and Control of Mechanical Structures of China (Grants MCMS-I-0219K01 and MCMS-E-0219K02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tian Jian Lu or Feng Xu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Liu, H., Jiao, J. et al. Biomechanics in plant resistance to drought. Acta Mech. Sin. 36, 1142–1157 (2020). https://doi.org/10.1007/s10409-020-00980-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-020-00980-1

Keywords

Navigation