Skip to main content
Log in

Parameter identification of nonlinear system via a dynamic frequency approach and its energy harvester application

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

A dynamic frequency-based parameter identification approach is applied for the nonlinear system with periodic responses. Starting from the energy equation, the presented method uses a dynamic frequency to precisely obtain the analytical limit cycle expression of nonlinear system and utilizes it as the mathematic foundation for parameter identification. Distinguished from the time-domain approaches, the strategy of using limit cycle to describe the system response is unaffected by the influence of phase change. The analytical expression is fitted with the value sets from phase coordinates measured in periodic oscillation of the nonlinear systems, and the unknown parameters are identified with the interior-reflective Newton method. Then the performance of this identification methodology is verified by an oscillator with nonlinear stiffness and damping. Besides, numerical simulations under noisy environment also verify the efficiency and robustness of the identification procedure. Finally, we apply this parameter identification method to the modeling of a large-amplitude energy harvester, to improve the accuracy of mechanical modeling. Not surprisingly, good agreement is achieved between the experimental data and identified parameters. It also verifies that the proposed approach is less time-consuming and more accuracy in identification procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gaëtan, K., Worden, K., Vakakis, A.F.: Past, present and future of nonlinear system identification in structural dynamics. Mech Syst Signal Pr. 20, 505–592 (2016)

    Google Scholar 

  2. Ge, X.B., Luo, Z., Ma, Y.: A novel data-driven model based parameter estimation of nonlinear systems. J. Sound Vib. 453, 188–200 (2019)

    Article  Google Scholar 

  3. Thothadri, M., Casas, R.A., Moon, F.C.: Nonlinear system identification of multi-degree-of-freedom systems. Nonlinear Dyn. 32, 307–322 (2003)

    Article  MathSciNet  Google Scholar 

  4. Xu, L.: The damping iterative parameter identification method for dynamical systems based on the sine signal measurement. Signal Process. 120, 660–667 (2016)

    Article  Google Scholar 

  5. Moore, K.J., Kurt, M., Eriten, M., et al.: Nonlinear parameter identification of a mechanical interface based on primary wave scattering. Exp. Mech. 57, 1495–1508 (2017)

    Article  Google Scholar 

  6. Do, T.N., Tjahjowidodo, T., Lau, M.W.S.: A new approach of friction model for tendon-sheath actuated surgical systems: nonlinear modelling and parameter identification. Mech. Mach. Theor. 85, 13–24 (2015)

    Article  Google Scholar 

  7. Thothadri, M., Moon, F.C.: Nonlinear system identification of systems with periodic limit-cycle response. Nonlinear Dyn. 39, 63–77 (2005)

    Article  MathSciNet  Google Scholar 

  8. Leontaritis, I.J., Billings, S.A.: Input-output parametric models for nonlinear systems. Int. J. Control 41, 303–328 (1985)

    Article  Google Scholar 

  9. Masri, S.F., Caughey, T.K.: A nonparametric identification technique for nonlinear dynamic problems. J. Appl. Mech. 46, 433–447 (1979)

    Article  Google Scholar 

  10. Mann, B.P., Khasawneh, F.A.: An energy-balance approach for oscillator parameter identification. J. Sound Vib. 321, 65–78 (2009)

    Article  Google Scholar 

  11. Peng, J., Peng, Z.: Parameter identification of strongly nonlinear vibration systems of 2-dof. J Dyn Control. 5, 54–56 (2007)

    Google Scholar 

  12. Dou, S.G., Ye, M., Zhang, W.: Nonlinearity system identification method with parametric excitation based on the incremental harmonic balance method. J Theor App Mech-Pol. 42, 332–336 (2010)

    Google Scholar 

  13. Tang, L., Yang, Y., Wu, H.: Modeling and experiment of a multiple-dof piezoelectric energy harvester. J. Opt. Soc. Am. A 8341, 39 (2012)

    Google Scholar 

  14. Perona, P., Porporato, A., Ridolfi, L.: On the trajectory method for the reconstruction of differential equations from time series. Nolinear Dyn. 23, 13–33 (2000)

    Article  MathSciNet  Google Scholar 

  15. Zhang, Z.W., Wang, Y.J., Wang, W.: Periodic solution of the strongly nonlinear asymmetry system with the dynamic frequency method. Symmetry. 11, 676 (2019)

    Article  Google Scholar 

  16. Chen, S.H., Chen, Y.Y., Szw, K.Y.: A hyperbolic perturbation method for determining homoclinic solution of certain strongly nonlinear autonomous oscillators. J. Sound Vib. 322, 381–392 (2009)

    Article  Google Scholar 

  17. Meesala, V.C., Hajj, M.R.: Identification of nonlinear piezoelectric coefficients. J. Appl. Phys. 124, 065112 (2018)

    Article  Google Scholar 

  18. Yao, M.H., Liu, P.F., Zhang, W.: Power generation capacity analysis of three kinds of piezoelectric vibration cantilever beams: comparison study. Adv. Mater. Sci. Eng. 26(28), 4880–4887 (2017)

    Google Scholar 

  19. Zou, H.X., Zhang, W.M.: Magnetically coupled flextensional transducer for wideband vibration energy harvesting: design, modeling and experiments. J. Sound Vib. 416, 55–79 (2018)

    Article  Google Scholar 

  20. Cao, D.X., Gao, Y.H., Hu, W.H.: Modeling and power performance improvement of a piezoelectric energy harvester for low-frequency vibration environments. Acta. Mech. Sin. 35, 894–911 (2019)

    Article  MathSciNet  Google Scholar 

  21. Yao, M.H., Ma, L., Zhang, W.: Study on power generations and dynamic responses of the bistable straight beam and the bistable L-shaped beam. Sci. China Technol. Sci. 61, 1404–1416 (2018)

    Article  Google Scholar 

  22. Wang, C., Zhang, Q.C., Wang, W.: Low-frequency wideband vibration energy harvesting by using frequency up-conversion and quin-stable nonlinearity. J. Sound Vib. 399, 169–181 (2017)

    Article  Google Scholar 

  23. Wang, Y.J., Zhang, Q.C., Wang, W., Yang, T.Z.: In-plane dynamics of a fluid-conveying corrugated pipe supported at both ends. Appl. Math. Mech-Engl. 40, 1119–1134 (2019)

    Article  Google Scholar 

  24. Yuan, T.C., Yang, J., Chen, L.Q.: Nonparametric identification of nonlinear piezoelectric mechanical systems. J. Appl. Mech. 85, 111008 (2018)

    Article  Google Scholar 

  25. Brunton, S.L., Nathan, K.J.: Data-driven science and engineering: machine learning, dynamical systems, and control. Cambridge University Press, Cambridge (2019)

    Book  Google Scholar 

  26. Wang, C., Zhang, Q.C., Wang, W.: A low-frequency, wideband quad-stable energy harvester using combined nonlinearity and frequency up-conversion by cantilever-surface contact. Mech. Syst. Signal Process. 112, 305–318 (2018)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grants 11772218 and 11872044), China-UK NSFC-RS Joint Project (Grants 11911530177 in China and IE181496 in UK), Tianjin Research Program of Application Foundation and Advanced Technology (Grant 17JCYBJC18900), and the National Key Research and Development Program of China (Grant 2018YFB0106200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Appendix A1

Appendix A1

$$\varGamma_{0,1} { = } - \left(\frac{{a_{0} \alpha_{2,0} \beta_{0,1} }}{{9\omega_{ 1 , 0}^{2} }} + \frac{{a_{0} b\alpha_{3,0} \beta_{0,1} }}{{3\omega_{ 1 , 0}^{2} }} + \frac{{2a_{0}^{3} \alpha_{4,0} \beta_{0,1} }}{{15\omega_{ 1 , 0}^{2} }} + \frac{{2a_{0} b^{2} \alpha_{4,0} \beta_{0,1} }}{{3\omega_{ 1 , 0}^{2} }} + \frac{{2a_{0}^{3} b\alpha_{5,0} \beta_{0,1} }}{{3\omega_{ 1 , 0}^{2} }} + \frac{{10a_{0} b^{3} \alpha_{5,0} \beta_{0,1} }}{{9\omega_{ 1 , 0}^{2} }}\right),$$
$$\begin{aligned} \varGamma_{ 0 , 2} { = }\frac{{a_{0}^{ 2} \alpha_{ 2,0}^{2} }}{{ 1 8\omega_{ 1 , 0}^{ 3} }} + \frac{{a_{0}^{2} b\alpha_{2,0} \alpha_{3,0} }}{{ 3\omega_{ 1 , 0}^{ 3} }} + \frac{{a_{0}^{2} b^{2} \alpha_{3,0}^{2} }}{{2\omega_{ 1 , 0}^{ 3} }} + \frac{{a_{0}^{4} \alpha_{2,0} \alpha_{4,0} }}{{5\omega_{ 1 , 0}^{ 3} }} + \frac{{2a_{0}^{2} b^{2} \alpha_{2,0} \alpha_{4,0} }}{{3\omega_{ 1 , 0}^{ 3} }} + \frac{{3a_{0}^{4} b\alpha_{3,0} \alpha_{4,0} }}{{5\omega_{ 1 , 0}^{ 3} }} \hfill \\ \begin{array}{*{20}c} {} & {} \\ \end{array} + \frac{{2a_{0}^{2} b^{3} \alpha_{3,0} \alpha_{4,0} }}{{\omega_{ 1 , 0}^{ 3} }} + \frac{{4a_{0}^{6} \alpha_{4,0}^{2} }}{{25\omega_{ 1 , 0}^{ 3} }} + \frac{{6a_{0}^{4} b^{2} \alpha_{4,0}^{2} }}{{5\omega_{ 1 , 0}^{ 3} }} + \frac{{2a_{0}^{ 2} b^{4} \alpha_{4,0}^{2} }}{{\omega_{ 1 , 0}^{ 3} }} + \frac{{a_{0}^{4} b\alpha_{2,0} \alpha_{5,0} }}{{\omega_{ 1 , 0}^{ 3} }} + \frac{{10a_{0}^{2} b^{3} \alpha_{2,0} \alpha_{5,0} }}{{9\omega_{ 1 , 0}^{ 3} }} \hfill \\ \begin{array}{*{20}c} {} & {} \\ \end{array} + \frac{{3a_{0}^{4} b^{2} \alpha_{3,0} \alpha_{5,0} }}{{\omega_{ 1 , 0}^{ 3} }} + \frac{{10a_{0}^{2} b^{4} \alpha_{3,0} \alpha_{5,0} }}{{ 3\omega_{ 1 , 0}^{ 3} }} + \frac{{8a_{0}^{6} b\alpha_{4,0} \alpha_{5,0} }}{{5\omega_{ 1 , 0}^{ 3} }} + \frac{{8a_{0}^{4} b^{3} \alpha_{4,0} \alpha_{5,0} }}{{\omega_{ 1 , 0}^{ 3} }} + \frac{{20a_{0}^{2} b^{5} \alpha_{4,0} \alpha_{5,0} }}{{ 3\omega_{ 1 , 0}^{ 3} }} \hfill \\ \begin{array}{*{20}c} {} & {} \\ \end{array} + \frac{{4a_{0}^{6} b^{2} \alpha_{5,0}^{2} }}{{\omega_{ 1 , 0}^{ 3} }} + \frac{{10a_{0}^{4} b^{4} \alpha_{5,0}^{2} }}{{\omega_{ 1 , 0}^{ 3} }} + \frac{{50a_{0}^{2} b^{6} \alpha_{5,0}^{2} }}{{9\omega_{ 1 , 0}^{ 3} }}, \hfill \\ \end{aligned}$$
$$\varGamma_{0,3} { = }\frac{{a_{0}^{3} \alpha_{4,0} \beta_{0,1} }}{{25\omega_{ 1 , 0}^{2} }} + \frac{{a_{0}^{3} b\alpha_{5,0} \beta_{0,1} }}{{5\omega_{ 1 , 0}^{2} }},$$
$$\begin{aligned} \varGamma_{ 0 , 4} { = } - \left(\frac{{a_{0}^{4} \alpha_{3,0}^{2} }}{{ 3 2\omega_{ 1 , 0}^{ 3} }} + \frac{{a_{0}^{4} \alpha_{2,0} \alpha_{4,0} }}{{15\omega_{ 1 , 0}^{ 3} }} + \frac{{9a_{0}^{4} b\alpha_{4,0} \alpha_{3,0} }}{{20\omega_{ 1 , 0}^{ 3} }} + \frac{{a_{0}^{6} \alpha_{4,0}^{2} }}{{10\omega_{ 1 , 0}^{ 3} }} + \frac{{9a_{0}^{4} b^{2} \alpha_{4,0}^{2} }}{{10\omega_{ 1 , 0}^{ 3} }} + \frac{{a_{0}^{4} b\alpha_{2,0} \alpha_{5,0} }}{{3\omega_{ 1 , 0}^{ 3} }} + \frac{{a_{0}^{6} \alpha_{3,0} \alpha_{5,0} }}{{8\omega_{ 1 , 0}^{ 3} }} \right.\hfill \\ \begin{array}{*{20}c} {} & {} \\ \end{array} \left. + \frac{{13a_{0}^{4} b^{2} \alpha_{3,0} \alpha_{5,0} }}{{8\omega_{ 1 , 0}^{ 3} }} + \frac{{3a_{0}^{6} b\alpha_{4,0} \alpha_{5,0} }}{{2\omega_{ 1 , 0}^{ 3} }} + \frac{{ 3 1a_{0}^{4} b^{3} \alpha_{4,0} \alpha_{5,0} }}{{6\omega_{ 1 , 0}^{ 3} }} + \frac{{a_{0}^{8} \alpha_{5,0}^{5} }}{{8\omega_{ 1 , 0}^{ 3} }} + \frac{{15a_{0}^{6} b^{2} \alpha_{5,0}^{2} }}{{4\omega_{ 1 , 0}^{ 3} }} + \frac{{155a_{0}^{4} b^{4} \alpha_{5,0}^{2} }}{{24\omega_{ 1 , 0}^{ 3} }}\right), \hfill \\ \end{aligned}$$
$$\varGamma_{ 0 , 6} { = }\frac{{a_{0}^{6} \alpha_{4,0}^{2} }}{{ 5 0\omega_{ 1 , 0}^{ 3} }} + \frac{{a_{0}^{6} \alpha_{3,0} \alpha_{5,0} }}{{24\omega_{ 1 , 0}^{ 3} }} + \frac{{11a_{0}^{6} b\alpha_{4,0} \alpha_{5,0} }}{{30\omega_{ 1 , 0}^{ 3} }} + \frac{{a_{0}^{8} \alpha_{5,0}^{2} }}{{12\omega_{ 1 , 0}^{ 3} }} + \frac{{11a_{0}^{6} b^{2} \alpha_{5,0}^{2} }}{{12\omega_{ 1 , 0}^{ 3} }},$$
$$\varGamma_{0,8} { = } - \frac{{a_{0}^{8} \alpha_{5,0}^{2} }}{{72\omega_{1,0}^{3} }},$$
$$\varGamma_{ 1 , 1} { = } - \left(\frac{{a_{0}^{2} \alpha_{3,0} \beta_{0,1} }}{{16\omega_{ 1 , 0}^{2} }} + \frac{{a_{0}^{2} b\alpha_{4,0} \beta_{0,1} }}{{4\omega_{ 1 , 0}^{2} }} + \frac{{13a_{0}^{4} \alpha_{5,0} \beta_{0,1} }}{{144\omega_{ 1 , 0}^{2} }} + \frac{{5a_{0}^{2} b^{2} \alpha_{5,0} \beta_{0,1} }}{{8\omega_{ 1 , 0}^{2} }}\right),$$
$$\begin{aligned} \varGamma_{ 1 , 2} { = }\frac{{a_{0}^{3} \alpha_{2,0} \alpha_{3,0} }}{{12\omega_{ 1 , 0}^{ 3} }} + \frac{{a_{0}^{3} b\alpha_{3,0}^{2} }}{{4\omega_{ 1 , 0}^{ 3} }} + \frac{{a_{0}^{3} b\alpha_{2,0} \alpha_{4,0} }}{{3\omega_{ 1 , 0}^{ 3} }} + \frac{{a_{0}^{5} \alpha_{3,0} \alpha_{4,0} }}{{10\omega_{ 1 , 0}^{ 3} }} + \frac{{3a_{0}^{3} b^{2} \alpha_{3,0} \alpha_{4,0} }}{{2\omega_{ 1 , 0}^{ 3} }} \hfill \\ \begin{array}{*{20}c} {} & {} \\ \end{array} + \frac{{2a_{0}^{5} b\alpha_{4,0}^{2} }}{{5\omega_{ 1 , 0}^{ 3} }} + \frac{{2a_{0}^{3} b^{3} \alpha_{4,0}^{2} }}{{\omega_{ 1 , 0}^{ 3} }} + \frac{{a_{0}^{5} \alpha_{2,0} \alpha_{5,0} }}{{6\omega_{ 1 , 0}^{ 3} }} + \frac{{5a_{0}^{3} b^{2} \alpha_{2,0} \alpha_{5,0} }}{{6\omega_{ 1 , 0}^{ 3} }} + \frac{{a_{0}^{5} b\alpha_{3,0} \alpha_{5,0} }}{{\omega_{ 1 , 0}^{ 3} }} \hfill \\ \begin{array}{*{20}c} {} & {} \\ \end{array} + \frac{{10a_{0}^{3} b^{3} \alpha_{3,0} \alpha_{5,0} }}{{3\omega_{ 1 , 0}^{ 3} }} + \frac{{a_{0}^{7} \alpha_{4,0} \alpha_{5,0} }}{{5\omega_{ 1 , 0}^{ 3} }} + \frac{{4a_{0}^{5} b^{2} \alpha_{4,0} \alpha_{5,0} }}{{\omega_{ 1 , 0}^{ 3} }} + \frac{{25a_{0}^{3} b^{4} \alpha_{4,0} \alpha_{5,0} }}{{3\omega_{ 1 , 0}^{ 3} }} \hfill \\ \begin{array}{*{20}c} {} & {} \\ \end{array} + \frac{{a_{0}^{7} b\alpha_{5,0}^{2} }}{{\omega_{ 1 , 0}^{ 3} }} + \frac{{20a_{0}^{5} b^{3} \alpha_{5,0}^{2} }}{{3\omega_{ 1 , 0}^{ 3} }} + \frac{{25a_{0}^{3} b^{5} \alpha_{5,0}^{2} }}{{3\omega_{ 1 , 0}^{ 3} }}, \hfill \\ \end{aligned}$$
$$\varGamma_{ 1 , 3} { = }\frac{{a_{0}^{4} \alpha_{5,0} \beta_{0,1} }}{{36\omega_{ 1 , 0}^{2} }},$$
$$\begin{aligned} \varGamma_{ 1 , 4} { = } - (\frac{{a_{0}^{5} \alpha_{3,0} \alpha_{4,0} }}{{ 2 0\omega_{ 1 , 0}^{ 3} }} + \frac{{a_{0}^{5} b\alpha_{4,0}^{2} }}{{5\omega_{ 1 , 0}^{ 3} }} + \frac{{a_{0}^{5} \alpha_{2,0} \alpha_{5,0} }}{{18\omega_{ 1 , 0}^{ 3} }} + \frac{{5a_{0}^{5} b\alpha_{3,0} \alpha_{5,0} }}{{12\omega_{ 1 , 0}^{ 3} }} + \frac{{a_{0}^{7} \alpha_{4,0} \alpha_{5,0} }}{{6\omega_{ 1 , 0}^{ 3} }} \hfill \\ \begin{array}{*{20}c} {} & {} \\ \end{array} + \frac{{11a_{0}^{5} b^{2} \alpha_{4,0} \alpha_{5,0} }}{{6\omega_{ 1 , 0}^{ 3} }} + \frac{{5a_{0}^{7} b\alpha_{5,0}^{2} }}{{6\omega_{ 1 , 0}^{ 3} }} + \frac{{55a_{0}^{5} b^{3} \alpha_{5,0}^{2} }}{{18\omega_{ 1 , 0}^{ 3} }}), \hfill \\ \end{aligned}$$
$$\varGamma_{ 1 , 6} { = }\frac{{a_{0}^{ 7} \alpha_{ 4,0} \alpha_{ 5,0} }}{{ 3 0\omega_{ 1 , 0}^{ 3} }} + \frac{{a_{0}^{ 7} b\alpha_{ 5,0}^{2} }}{{ 6\omega_{ 1 , 0}^{ 3} }}.$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Wang, W. & Wang, C. Parameter identification of nonlinear system via a dynamic frequency approach and its energy harvester application. Acta Mech. Sin. 36, 606–617 (2020). https://doi.org/10.1007/s10409-020-00972-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-020-00972-1

Keywords

Navigation