Skip to main content
Log in

Flow field analyses of a porous membrane-separated, double-layered microfluidic chip for cell co-culture

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Organs-on-chips composed of a porous membrane-separated, double-layered channels are used widely in elucidating the effects of cell co-culture and flow shear on biological functions. While the diversity of channel geometry and membrane permeability is applied, their quantitative correlation with flow features is still unclear. Immersed boundary methods (IBM) simulations and theoretical modelling were performed in this study. Numerical simulations showed that channel length, height and membrane permeability jointly regulated the flow features of flux, penetration velocity and wall shear stress (WSS). Increase of channel length, lower channel height or membrane permeability monotonically reduced the flow flux, velocity and WSS in upper channel before reaching a plateau. While the flow flux in lower channel monotonically increased with the increase of each factor, the WSS surprisingly exhibited a biphasic pattern with first increase and then decrease with increase of lower channel height. Moreover, the transition threshold of maximum WSS was sensitive to the channel length and membrane permeability. Theoretical modeling, integrating the transmembrane pressure difference and inlet flow flux with chip geometry and membrane permeability, was in good agreement with IBM simulations. These analyses provided theoretical bases for optimizing flow-specified chip design and evaluating flow microenvironments of in vivo tissue.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Du, Y., Li, N., Yang, H., et al.: Mimicking liver sinusoidal structures and functions using a 3D-configured microfluidic chip. Lab Chip 17, 782–794 (2017). https://doi.org/10.1039/c6lc01374k

    Article  Google Scholar 

  2. Jang, K.J., Suh, K.Y.: A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab Chip 10, 36–42 (2010). https://doi.org/10.1039/b907515a

    Article  Google Scholar 

  3. Huh, D., Matthews, B.D., Mammoto, A., et al.: Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2010). https://doi.org/10.1126/science.1188302

    Article  Google Scholar 

  4. Sung, J.H., Yu, J.J., Luo, D., et al.: Microscale 3-D hydrogel scaffold for biomimetic gastrointestinal (GI) tract model. Lab Chip 11, 389–392 (2011). https://doi.org/10.1039/c0lc00273a

    Article  Google Scholar 

  5. Huh, D., Torisawa, Y.S., Hamilton, G.A., et al.: Microengineered physiological biomimicry: organs-on-chips. Lab Chip 12, 2156–2164 (2012). https://doi.org/10.1039/c2lc40089h

    Article  Google Scholar 

  6. Guguen-Guillouzo, C., Clement, B., Baffet, G., et al.: Maintenance and reversibility of active albumin secretion by adult rat hepatocytes co-cultured with another liver epithelial cell type. Exp. Cell Res. 143, 47–54 (1983). https://doi.org/10.1016/0014-4827(83)90107-6

    Article  Google Scholar 

  7. Yeon, J.H., Park, J.K.: Microfluidic cell culture systems for cellular analysis. Biochip J. 1, 17–27 (2007)

    Google Scholar 

  8. Kim, S.S., Utsunomiya, H., Koski, J.A., et al.: Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels. Ann. Surg. 228, 8–13 (1998). https://doi.org/10.1097/00000658-199807000-00002

    Article  Google Scholar 

  9. Lorenz, L., Axnick, J., Buschmann, T., et al.: Mechanosensing by beta1 integrin induces angiocrine signals for liver growth and survival. Nature 562, 128–132 (2018). https://doi.org/10.1038/s41586-018-0522-3

    Article  Google Scholar 

  10. Zhong, M., Komarova, Y., Rehman, J., et al.: Mechanosensing Piezo channels in tissue homeostasis including their role in lungs. Pulm. Circ. 8, 6 (2018). https://doi.org/10.1177/2045894018767393

    Article  Google Scholar 

  11. Kawata, K., Aoki, S., Futamata, M., et al.: Mesenchymal cells and fluid flow stimulation synergistically regulate the kinetics of corneal epithelial cells at the air-liquid interface. Graefes Arch. Clin. Exp. Ophthalmol. 257, 1915–1924 (2019). https://doi.org/10.1007/s00417-019-04422-y

    Article  Google Scholar 

  12. Humphrey, J.D.: Vascular adaptation and mechanical homeostasis at tissue, cellular, and sub-cellular levels. Cell Biochem. Biophys. 50, 53–78 (2008). https://doi.org/10.1007/s12013-007-9002-3

    Article  Google Scholar 

  13. Ong, L.J.Y., Ching, T., Chong, L.H., et al.: Self-aligning Tetris-Like (TILE) modular microfluidic platform for mimicking multi-organ interactions. Lab Chip 19, 2178–2191 (2019). https://doi.org/10.1039/c9lc00160c

    Article  Google Scholar 

  14. Santhanam, N., Kumanchik, L., Guo, X.F., et al.: Stem cell derived phenotypic human neuromuscular junction model for dose response evaluation of therapeutics. Biomaterials 166, 64–78 (2018). https://doi.org/10.1016/j.biomaterials.2018.02.047

    Article  Google Scholar 

  15. Chung, H.H., Mireles, M., Kwarta, B.J., et al.: Use of porous membranes in tissue barrier and co-culture models. Lab Chip 18, 1671–1689 (2018). https://doi.org/10.1039/c7lc01248a

    Article  Google Scholar 

  16. Carter, R.N., Casillo, S.M., Mazzocchi, A.R., et al.: Ultrathin transparent membranes for cellular barrier and co-culture models. Biofabrication 9, 13 (2017). https://doi.org/10.1088/1758-5090/aa5ba7

    Article  Google Scholar 

  17. Huh, D., Leslie, D.C., Matthews, B.D., et al.: A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Sci. Transl. Med. 4, 8 (2012). https://doi.org/10.1126/scitranslmed.3004249

    Article  Google Scholar 

  18. Kang, Y.B., Sodunke, T.R., Lamontagne, J., et al.: Liver sinusoid on a chip: long-term layered co-culture of primary rat hepatocytes and endothelial cells in microfluidic platforms. Biotechnol. Bioeng. 112, 2571–2582 (2015). https://doi.org/10.1002/bit.25659

    Article  Google Scholar 

  19. Prodanov, L., Jindal, R., Bale, S.S., et al.: Long-term maintenance of a microfluidic 3D human liver sinusoid. Biotechnol. Bioeng. 113, 241–246 (2016). https://doi.org/10.1002/bit.25700

    Article  Google Scholar 

  20. Deng, J., Zhang, X.L., Chen, Z.Z., et al.: A cell lines derived microfluidic liver model for investigation of hepatotoxicity induced by drug–drug interaction. Biomicrofluidics (2019). https://doi.org/10.1063/1.5070088

    Article  Google Scholar 

  21. Battista, N.A., Strickland, W.C., Miller, L.A.: IB2d: a Python and MATLAB implementation of the immersed boundary method. Bioinspir. Biomim. (2017). https://doi.org/10.1088/1748-3190/aa5e08

    Article  Google Scholar 

  22. Kim, Y., Peskin, C.S.: 2-D parachute simulation by the immersed boundary method. SIAM J. Sci. Comput. 28, 2294–2312 (2006). https://doi.org/10.1137/S1064827501389060

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhao, H.Y., Li, J., Xu, M., et al.: Elevated whole blood viscosity is associated with insulin resistance and non-alcoholic fatty liver. Clin. Endocrinol. 83, 806–811 (2015). https://doi.org/10.1111/cen.12776

    Article  Google Scholar 

  24. Ma, S.H., Lepak, L.A., Hussain, R.J., et al.: An endothelial and astrocyte co-culture model of the blood–brain barrier utilizing an ultra-thin, nanofabricated silicon nitride membrane. Lab Chip 5, 74–85 (2005). https://doi.org/10.1039/b405713a

    Article  Google Scholar 

  25. Chung, H.H., Chan, C.K., Khire, T.S., et al.: Highly permeable silicon membranes for shear free chemotaxis and rapid cell labeling. Lab Chip 14, 2456–2468 (2014). https://doi.org/10.1039/c4lc00326h

    Article  Google Scholar 

  26. Bhatia, S.N., Ingber, D.E.: Microfluidic organs-on-chips. Nat. Biotechnol. 32, 760–772 (2014). https://doi.org/10.1038/nbt.2989

    Article  Google Scholar 

  27. VanDersarl, J.J., Xu, A.M., Melosh, N.A.: Rapid spatial and temporal controlled signal delivery over large cell culture areas. Lab Chip 11, 3057–3063 (2011). https://doi.org/10.1039/c1lc20311h

    Article  Google Scholar 

  28. Shu, C., Liu, N., Chew, Y.T.: A novel immersed boundary velocity correction–lattice Boltzmann method and its application to simulate flow past a circular cylinder. J. Comput. Phys. 226, 1607–1622 (2007). https://doi.org/10.1016/j.jcp.2007.06.002

    Article  MATH  Google Scholar 

  29. Kim, J., Kim, D., Choi, H.: An immersed-boundary finite-volume method for simulations of flow in complex geometries. J. Comput. Phys. 171, 132–150 (2001). https://doi.org/10.1006/jcph.2001.6778

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, X., Shu, C., Wu, J., et al.: A boundary condition-implemented immersed boundary-lattice boltzmann method and its application for simulation of flows around a circular cylinder. Adv. Appl. Math. Mech. 6, 811–829 (2015). https://doi.org/10.4208/aamm.2013.m-s2

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Drs. Beiji Shi and Shizhao Wang for helpful discussions. The simulations were performed on the High-Performance Computing Center of Collaborative Innovation Center of Advanced Microstructures in Nanjing. This work was supported by the National Natural Science Foundation of China (Grants 91642203, 31627804, 31661143044, and 31570942), the Frontier Science Key Project of Chinese Science Academy (Grant QYZDJ-SSW-JSC018), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant XDB22040101).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shouqin Lü or Mian Long.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 9202 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Xue, J., Hu, J. et al. Flow field analyses of a porous membrane-separated, double-layered microfluidic chip for cell co-culture. Acta Mech. Sin. 36, 754–767 (2020). https://doi.org/10.1007/s10409-020-00953-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-020-00953-4

Keywords

Navigation