Skip to main content

Surface effects on cylindrical indentation of a soft layer on a rigid substrate

Abstract

In this paper, theoretical and numerical methods are combined to investigate the two-dimensional, cylindrical indentation of an elastic soft layer bonded on a rigid substrate. By incorporating the Gurtin–Murdoch’s theory of surface elasticity into the Kerr model, we account for surface effects on the indentation behavior of a soft layer. The governing differential relation between the surface pressure and displacement of the film–substrate system is derived. For an incompressible thin layer, the explicit solutions are derived, which are simple and easy-to-use. Finite element simulations are performed using an explicit restart algorithm to study the indentation properties of the layer–substrate system and to examine the validity and accuracy of the theoretical solutions. This work holds promise for applications in mechanical characterization of soft materials, such as biological tissues and cells.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Hu, Y.H., Zhao, X.H., Vlassak, J.J., Suo, Z.G.: Using indentation to characterize the poroelasticity of gels. Appl. Phys. Lett. 96, 121904 (2010)

    Article  Google Scholar 

  2. Czerner, M., Fellay, L.S., Suárez, M.P., Frontini, P.M., Fasce, L.A.: Determination of elastic modulus of gelatin gels by indentation experiments. Procedia Mater. Sci. 8, 287–296 (2015)

    Article  Google Scholar 

  3. Oyen, M.L.: Nanoindentation of biological and biomimetic materials. Exp. Tech. 37, 73–87 (2013)

    Article  Google Scholar 

  4. Chen, J.J.: Understanding the nanoindentation mechanisms of a microsphere for biomedical applications. J. Phys. D Appl. Phys. 46, 495303 (2013)

    Article  Google Scholar 

  5. Dimitriadis, E.K., Horkay, F., Maresca, J., Kachar, B., Chadwick, R.S.: Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys. J. 82, 2798–2810 (2002)

    Article  Google Scholar 

  6. Cross, S.E., Jin, Y.S., Rao, J., Gimzewski, J.K.: Nanomechanical analysis of cells from cancer patients. Nat. Nanotechnol. 2, 780–783 (2007)

    Article  Google Scholar 

  7. Gavara, N., Chadwick, R.S.: Determination of the elastic moduli of thin samples and adherent cells using conical atomic force microscope tips. Nat. Nanotechnol. 7, 733–736 (2012)

    Article  Google Scholar 

  8. Haase, K., Pelling, A.E.: Investigating cell mechanics with atomic force microscopy. J. R. Soc. Interface 12, 20140970 (2015)

    Article  Google Scholar 

  9. Zhang, M.G., Chen, J., Feng, X.Q., Cao, Y.P.: On the applicability of Sneddon’s solution for interpreting the indentation of nonlinear elastic biopolymers. J. Appl. Mech. 81, 091011 (2014)

    Article  Google Scholar 

  10. Zhang, M.G., Cao, Y.P., Li, G.Y., Feng, X.Q.: Spherical indentation method for determining the constitutive parameters of hyperelastic soft materials. Biomech. Model. Mechanobiol 13, 1–11 (2014)

    Article  Google Scholar 

  11. Yang, F.Q.: Indentation of an incompressible elastic film. Mech. Mater. 30, 275–286 (1998)

    Article  Google Scholar 

  12. Yang, F.Q.: Axisymmetric indentation of an incompressible elastic thin film. J. Phys. D Appl. Phys. 36, 50 (2002)

    Article  Google Scholar 

  13. Li, M., Ru, C.Q., Gao, C.-F.: An alternative method for indentation of an elastic thin beam by a rigid indenter. Int. J. Mech. Sci. 149, 508–513 (2018)

    Article  Google Scholar 

  14. Wu, J., Ru, C.: Spherical indentation of an elastic layer on a rigid substrate revisited. Thin Solid Films 669, 500–508 (2019)

    Article  Google Scholar 

  15. Chakrabarti, A., Chaudhury, M.K.: Surface folding-induced attraction and motion of particles in a soft elastic gel: cooperative effects of surface tension, elasticity, and gravity. Langmuir 29, 15543–15550 (2013)

    Article  Google Scholar 

  16. Style, R.W., Boltyanskiy, R., Che, Y., Wettlaufer, J., Wilen, L.A., Dufresne, E.R.: Universal deformation of soft substrates near a contact line and the direct measurement of solid surface stresses. Phys. Rev. Lett. 110, 066103 (2013)

    Article  Google Scholar 

  17. Style, R.W., Hyland, C., Boltyanskiy, R., Wettlaufer, J.S., Dufresne, E.R.: Surface tension and contact with soft elastic solids. Nat. Commun. 4, 2728 (2013)

    Article  Google Scholar 

  18. Cammarata, R.C.: Surface and interface stress effects in thin films. Prog. Surf. Sci. 46, 1–38 (1994)

    Article  Google Scholar 

  19. Nozieres, P., Pistolesi, F., Balibar, S.: Steps and facets at the surface of soft crystals. Eur. Phys. J. B 24, 387–394 (2001)

    Article  Google Scholar 

  20. He, L.H., Lim, C.W.: Surface Green function for a soft elastic half-space: influence of surface stress. Int. J. Solids Struct. 43, 132–143 (2006)

    Article  Google Scholar 

  21. Wang, G.F., Feng, X.Q.: Effects of surface stresses on contact problems at nanoscale. J. Appl. Phys. 101, 013510 (2007)

    Article  Google Scholar 

  22. Dai, M., Yang, H.B., Schiavone, P.: Stress concentration around an elliptical hole with surface tension based on the original Gurtin–Murdoch model. Mech. Mater. 135, 144–148 (2019)

    Article  Google Scholar 

  23. Yuan, W.K., Wang, G.F.: Cylindrical indentation of an elastic bonded layer with surface tension. Appl. Math. Model. 65, 597–613 (2019)

    MathSciNet  Article  Google Scholar 

  24. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)

    MathSciNet  Article  Google Scholar 

  25. Gurtin, M.E., Weissmüller, J.W., Larche, F.: A general theory of curved deformable interfaces in solids at equilibrium. Philos. Mag. A 78, 1093–1109 (1998)

    Article  Google Scholar 

  26. Vasu, T.S., Bhandakkar, T.K.: A study of the contact of an elastic layer-substrate system indented by a long rigid cylinder incorporating surface effects. J. Appl. Mech. 83, 061009 (2016)

    Article  Google Scholar 

  27. Ding, Y., Niu, X.R., Wang, G.F.: Elastic compression of nanoparticles with surface energy. J. Phys. D Appl. Phys. 48, 485303 (2015)

    Article  Google Scholar 

  28. Ding, Y., Yuan, W.K., Wang, G.F.: Spherical indentation on biological films with surface energy. J. Phys. D Appl. Phys. 51, 295401 (2018)

    Article  Google Scholar 

  29. Chen, P., Chen, S., Peng, Z.: Thermo-contact mechanics of a rigid cylindrical punch sliding on a finite graded layer. Acta Mech. 223, 2647–2665 (2012)

    MathSciNet  Article  Google Scholar 

  30. Chen, P., Chen, S.: Thermo-mechanical contact behavior of a finite graded layer under a sliding punch with heat generation. Int. J. Solids Struct. 50, 1108–1119 (2013)

    Article  Google Scholar 

  31. Ru, C.Q.: Surface instability of an elastic thin film interacting with a suspended elastic plate. J. Appl. Mech. 69, 97–103 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant 11921002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi-Qiao Feng.

Appendix: Derivation of Kerr-type governing differential equation

Appendix: Derivation of Kerr-type governing differential equation

For the case of an elastic thin layer bonded to a rigid substrate (Fig. 1), the displacements and stresses in the layer under the plane-strain assumption are expressed as [31]

$$ \begin{aligned} \sigma_{xz} & = - \frac{1}{2}\left[ {zD^{2} \cos \left( {zD} \right) - D\sin \left( {zD} \right)} \right]X^{\prime}_{0} \\ &\quad - \left[ {\cos \left( {zD} \right) + \frac{1}{2}zD\sin \left( {zD} \right)} \right]X^{\prime}_{1} \\ & \quad - \frac{1}{2}\left[ {z\cos \left( {zD} \right) + \frac{1}{D}\sin \left( {zD} \right)} \right]X^{\prime}_{2} - \frac{1}{2}\frac{z}{D}\sin \left( {zD} \right)X^{\prime}_{3} , \\ \end{aligned} $$
(25)
$$ \begin{aligned} \sigma_{zz} & = \left[ {\cos \left( {zD} \right) + \frac{1}{2}zD\sin \left( {zD} \right)} \right]X^{\prime\prime}_{0} \\ &\quad + \left[ {\frac{3}{2D}\sin \left( {zD} \right) - \frac{1}{2}z\cos \left( {zD} \right)} \right]X^{\prime\prime}_{1} \\ & \quad + \frac{z}{2D}\sin \left( {zD} \right)X^{\prime\prime}_{2} + \frac{1}{2}\left[ {\frac{1}{{D^{3} }}\sin \left( {zD} \right) - \frac{z}{{D^{2} }}\cos \left( {zD} \right)} \right]X^{\prime\prime}_{3} , \\ \end{aligned} $$
(26)
$$ \begin{aligned} Eu_{x} & = \left( {1 - v^{2} } \right)\left[ D\cos \left( {zD} \right)X_{0} + \sin \left( {zD} \right)X_{1} \right. \\ &\quad \left. + \frac{1}{D}\cos \left( {zD} \right)X_{2} + \frac{1}{{D^{2} }}\sin \left( {zD} \right)X_{3} \right] \\ & \quad - \left( {1 + v} \right)\left[ \left[ {\cos \left( {zD} \right) + \frac{1}{2}zD\sin \left( {zD} \right)} \right]X^{\prime}_{0} \right. \\ &\quad \left. + \left[ {\frac{3}{2D}\sin \left( {zD} \right) - \frac{1}{2}z\cos \left( {zD} \right)} \right]X^{\prime}_{1} \right. \\ & \quad + \frac{z}{2D}\sin \left( {zD} \right)X^{\prime}_{2} + \left. {\frac{1}{2}\left[ {\frac{1}{{D^{3} }}\sin \left( {zD} \right) - \frac{z}{{D^{2} }}\cos \left( {zD} \right)} \right]X^{\prime}_{3} } \right], \\ \end{aligned} $$
(27)
$$ \begin{aligned} Eu_{z} & = \left( {1 - v^{2} } \right)\left[ \sin \left( {zD} \right)X^{\prime}_{0} - \frac{1}{D}\cos \left( {zD} \right)X^{\prime}_{1} \right.\\ &\quad \left. + \frac{1}{{D^{2} }}\sin \left( {zD} \right)X^{\prime}_{2} - \frac{1}{{D^{3} }}\cos \left( {zD} \right)X^{\prime}_{3} \right] \\ & \quad - \left( {1 + v} \right)\left\{ \frac{1}{2}\left[ {zD^{2} \cos \left( {zD} \right) - D\sin \left( {zD} \right)} \right]X_{0} \right.\\ &\quad \left. + \left[ {\frac{1}{2}zD\sin \left( {zD} \right) + \cos \left( {zD} \right)} \right]X_{1} \right. \\ & \quad \left. { + \frac{1}{2}\left[ {\frac{{\sin \left( {zD} \right)}}{D} + z\cos \left( {zD} \right)} \right]X_{2} + \frac{z}{2D}\sin \left( {zD} \right)X_{3} } \right\}, \\ \end{aligned} $$
(28)

where Xi (i = 0, 1, 2, 3) are unknown functions of x, the prime represents the derivative of the variables, and D = d/dx denotes the differential operator.

By neglecting the variation of surface tension with deformation [21, 22], the normal stress boundary condition on the upper surface (\( z = 0 \)) is given by

$$ \sigma_{zz} (x,0) = - p(x) + \sigma D^{2} u_{z} (x,0). $$
(29)

Other stress and displacement boundary conditions on the upper (\( z = 0 \)) and lower surfaces (\( z = - h \)) of the elastic layer are written as

$$ \begin{aligned}& u_{z} (x,0) = - w,\; \, \sigma_{xz} (x,0) = 0, \hfill \\& u_{x} (x, - h) = 0, \, u_{z} (x, - h) = 0. \hfill \\ \end{aligned} $$
(30)

Substitution of Eqs. (2528) into (29) and (30) leads to

$$ X_{0}^{{\prime \prime }} = - p(x) - \sigma_{1} D^{2} w, $$
(31)
$$ X_{3}^{{\prime }} = E^{*} D^{3} w, $$
(32)
$$ X_{1}^{{\prime }} = 0, $$
(33)
$$ \begin{aligned} &\left( {1 - v^{2} } \right)\left[ D\cos \left( {hD} \right)X_{0} - \sin \left( {hD} \right)X_{1} + \frac{1}{D}\cos \left( {hD} \right)X_{2} \right.\\ &\quad \left. - \frac{1}{{D^{2} }}\sin \left( {hD} \right)X_{3} \right] \hfill \\ &\quad - \left( {1 + v} \right)\left\{ \left[ {\cos \left( {hD} \right) + \frac{1}{2}hD\sin \left( {hD} \right)} \right]X^{\prime}_{0} \right. \hfill \\ &\quad \left. + \frac{h}{2D}\sin \left( {hD} \right)X^{\prime}_{2} \right. \\ &\quad \left. + \frac{1}{2}\left[ { - \frac{1}{{D^{3} }}\sin \left( {hD} \right) + \frac{h}{{D^{2} }}\cos \left( {hD} \right)} \right]X^{\prime}_{3} \right\} = 0, \hfill \\ \end{aligned} $$
(34)
$$ \begin{aligned} & \left( {1 - v^{2} } \right)\left[ - \sin \left( {hD} \right)X^{\prime}_{0} - \frac{1}{{D^{2} }}\sin \left( {hD} \right)X^{\prime}_{2} \right.\\ &\quad \left. - \frac{1}{{D^{3} }}\cos \left( {hD} \right)X^{\prime}_{3} \right] \hfill \\ &\quad - \left( {1 + v} \right)\left\{ \frac{1}{2}\left[ { - hD^{2} \cos \left( {hD} \right) + D\sin \left( {hD} \right)} \right]X_{0} \right.\\ &\quad \left. + \left[ {\frac{1}{2}hD\sin \left( {hD} \right) + \cos \left( {hD} \right)} \right]X_{1} \right. \\ &\quad \left. + \frac{1}{2}\left[ { - \frac{{\sin \left( {hD} \right)}}{D} - h\cos \left( {hD} \right)} \right]X_{2} + \frac{h}{2D}\sin \left( {hD} \right)X_{3} \right\} = 0. \hfill \\ \end{aligned} $$
(35)

After eliminating X0, X1, X2, and X3, the relation between contact pressure p and surface displacement w is obtained as

$$ \begin{aligned} & \left[ \frac{1}{4}(1 + v)(3 - 4v)\sin (hD)\sin (hD) \right.\\ &\quad \left. - (1 - v^{2} )(1 - v) + \frac{1}{4}(1 + v)h^{2} D^{2} \right]w \hfill \\ &\quad = \frac{{(1 - v^{2} )}}{E}\left\{ \frac{1}{2}h(1 + v) - \sin (hD)\cos (hD) \right.\\ &\quad \left. \left[ {\frac{1}{2D}(1 + v)(3 - 4v)} \right] \right\}\left( {p + \sigma D^{2} w} \right). \hfill \\ \end{aligned} $$
(36)

The trigonometric functions in Eq. (36) can be expanded in power series of hD as

$$ \begin{aligned} \sin (hD)\cos (hD) & = hD - \frac{2}{3}(hD)^{3} + \frac{2}{15}(hD)^{5} - \frac{4}{315}(hD)^{7} \cdots , \hfill \\ \sin (hD)\sin (hD) & = (hD)^{2} - \frac{1}{3}(hD)^{4} + \frac{2}{45}(hD)^{6} - \frac{1}{315}(hD)^{8} \cdots . \hfill \\ \end{aligned} $$
(37)

From the series expansion in Eq. (36) and neglecting high-order terms, we can obtain the governing Eq. (1).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, M., Zhang, HX., Zhao, ZL. et al. Surface effects on cylindrical indentation of a soft layer on a rigid substrate. Acta Mech. Sin. 36, 422–429 (2020). https://doi.org/10.1007/s10409-020-00941-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-020-00941-8

Keywords

  • Soft materials
  • Indentation
  • Surface effect
  • Contact
  • Kerr model