Skip to main content
Log in

Fluid–structure interaction in Z-shaped pipe with different supports

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Fluid–structure interaction (FSI) has a strong relation with layout of fluid delivery system. FSI is liable to cause local damage. Thus, FSI analysis is necessary in many cases, especially for flexible pipe systems. FSI modeling consists of eight governing equations and then completely solved via the finite volume method (FVM). Friction, Poisson and joint couplings were discussed in detail to reveal the influence of a Z-shaped pipe with different supports and elbows on FSI. After the feasibility of solving FSI by FVM was verified, the different effects of free, fixed and elastic supports on FSI in the commonly used and simplified Z-shaped pipe were further analyzed. Results indicated that different support stiffness lead to various FSI responses. If coupling occurs at the elbow and less support is considered, then the pipe has a relatively large amplitude and complex pressure fluctuation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Olalla, G., SasIrene, D., Begoña, G.: Liquid-liquid extraction of phenolic compounds from water using ionic liquids: Literature review and new experimental data using [C2mim] FSI. J. Environ. Manag. 78, 475–482 (2018)

    Google Scholar 

  2. Osama, M., Theofilis, V., Ahmed, E.: Fluid structure interaction (FSI) simulation of the human eye under the air puff tonometry using computational fluid dynamics (CFD). Tenth International Conference on Computational Fluid Dynamic (ICCFD) Barcelona, Spain, 9-13 July 2018.

  3. Bazilevs, Y., Yan, J., Deng, X.: Simulating free-surface FSI and fatigue damage in wind-turbine structural systems, vol. 1, pp. 1–28 (2018)

  4. Banks, J.W., Henshaw, W.D., Schwen, D.W.: A stable partitioned FSI algorithm for rigid bodies and incompressible flow in three dimensions. J. Comput. Phys. 73, 455–492 (2018)

    Article  MathSciNet  Google Scholar 

  5. Casadei, F., Halleux, J.P., Sala, A., et al.: Transient fluid–structure interaction algorithms for large industrial applications. Comput. Methods Appl. Mech. Eng. 190, 3081–3110 (2001)

    Article  Google Scholar 

  6. Zhang, L.X., Huang, W.H., Tijsseling, A.S.: Vibration spectrum analysis of fluid solid coupling induced by water hammer in weakly restrained pipes. Eng. Mech. 17, 1–12 (2000)

    Google Scholar 

  7. Liu, Z.Y., Jiang, T.L., Wang, L., et al.: Nonplanar flow-induced vibrations of a cantilevered pipe-in-pipe structure system concurrently subjected to internal and cross flows. Acta. Mech. Sin. 38, 1208–1218 (2018)

    Google Scholar 

  8. Toshiyuki, N., Ryusuke, N., Shinobu, K., et al.: A simulation-based study on longitudinal gust response of flexible flapping wings. Acta. Mech. Sin. 34, 1048–1060 (2018)

    Article  Google Scholar 

  9. Ansari, R., Gholami, R., Norouzzadehl, A., et al.: Surface stress effect on the vibration and instability of nanoscale pipes conveying fluid based on a size-dependent Timoshenko beam mode. Acta. Mech. Sin. 31, 708–719 (2015)

    Article  MathSciNet  Google Scholar 

  10. Heinsbroek, A.G.T.J., Tijsseling, A.S.: The influence of support rigidity on water hammer pressures and pipe stresses. In: Proceedings of the 2nd BHR Group International Conference on Water Pipeline Systems, Edinburgh, UK, 24–26 (1994)

  11. Zanganehan, R., Keramat, A.: Fluid–structure interaction with viscoelastic supports during water hammer in a pipeline. J. Fluids Struct. 54, 215–234 (2015)

    Article  Google Scholar 

  12. Adamkowski, A., Henclik, S., Janicki, W., et al.: The influence of pipeline supports stiffness onto the water hammer run. Eur. J. Mech. B/Fluids. 61, 297–303 (2017)

    Article  Google Scholar 

  13. Henclik, S.: Numerical modeling of water hammer with fluid–structure interaction in a pipeline with viscoelastic supports. J. Fluids Struct. 76, 469–487 (2018)

    Article  Google Scholar 

  14. Darocha, R.G., Rachid, F.B.D.: Numerical solution of fluid-structure interaction in piping systems by Glimm’s method. J. Fluids Struct. 28, 392–415 (2012)

    Article  Google Scholar 

  15. Li, Y.S., Han, X.D., Zhang, Y.H., et al.: Dynamical strength and design optimization of pipe-joint system under pressure impact load. J. Aerosp. Eng. 226, 1029–1040 (2011)

    Google Scholar 

  16. Tijsseling, A.S., Vaugrante, P.: FSI in L-shaped and T-shaped pipe systems. In: Proceedings of the the 10th Int Meeting of the IAHR Work Group on the Behavior of Hydraulic Machinery under Steady Oscillatory Conditions, Trondheim, Norway, vol. 6, (2001)

  17. Davidson, L.C., Smith, J.E.: Liquid-structure coupling in curved pipes. Shock Vib. Bull. 40, 197–207 (1969)

    Google Scholar 

  18. Tijsseling, A.S, Vardy, A.E.: Twenty years of FSI experiments in Dundee. Third MIT Conference on Computational Fluid and Solid Mechanics, 1013-1017 (2005)

  19. Covas, D., Stoianov, I., Mano, J., et al.: The dynamic effect of pipe-wall viscoelasticity on hydraulic transients, Part I: experimental analysis and creep characterization. J. Hydraul. Res. 42, 516–530 (2004)

    Article  Google Scholar 

  20. Covas, D., Ivan, S.I., Mano, J., et al.: The dynamic miceffectof pipe-wall viscoelastic city in hydraulic transients. Part II-Model development, calibration and verification. J. Hydraul. Res. 43, 56–70 (2005)

    Article  Google Scholar 

  21. Lesmez, M.W., Wiggert, D.C., Hatfield, F.J.: Modal analysis of vibrations in liquid-filled piping systems. J. Fluids Eng. 112, 311–318 (1990)

    Article  Google Scholar 

  22. Wiggert, D.C., Otwell, R.S., Hatfield, F.J.: The effect of elbow restraint on pressure transients. J. Fluids Eng. 107, 402–406 (1985)

    Article  Google Scholar 

  23. Tijsseling, A.S., Wiggert, D.C.: Fluid transients and fluid-structure interaction in flexible liquid-filled piping. Department of Mathematics and Computing Science Eindhoven University of Technology, (2001)

  24. Jin, B.T., Li, B.Y., Zhou, Z.: An analysis of the Crank-Nicolson method for subdiffusion. IMA J. Numer. Anal. 38, 518–541 (2018)

    Article  MathSciNet  Google Scholar 

  25. Xu, Y.Z., Johnston, D.N., Jiao, Z.X., et al.: Frequency modelling and solution of fluid–structure interaction in complex pipelines. J. Sound Vib. 333, 2800–2822 (2014)

    Article  Google Scholar 

  26. Li, S.J., Karney, B.W., Liu, G.M.: FSI research in pipeline systems—a review of the literature. J. Fluids Struct. 57, 277–297 (2015)

    Article  Google Scholar 

  27. Ramírez, L., Nogueira, X., Ouro, P., et al.: A higher-order chimera method for finite volume schemes. Arch. Comput. Methods Eng. 25, 691–706 (2018)

    Article  MathSciNet  Google Scholar 

  28. Hwang, Y.H., Chung, N.M.: A fast Godunov method for the water-hammer problem. Int. J. Numer. Methods Fluids 40, 799–819 (2002)

    Article  Google Scholar 

  29. Tijsseling, A.S., Vardy, A.E., Fan, D.: Fluid-structure interaction and cavitation in a single-elbow pipe system. J. Fluids Struct. 10, 395–420 (1996)

    Article  Google Scholar 

  30. Wylie, E.B., Streeter, V.L.: Fluid Transient in System. Prentice Hall, Englewood Cliff, NJ (1983)

    Google Scholar 

  31. Ferras, D., Pedro, A., Manso, A.J., et al.: Fluid-structure interaction in straight pipelines with different anchoring conditions. J. Sound Vib. 394, 348–365 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The first author is grateful to Hydropower Laboratory of Hohai University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. L. Guan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Q., Zhou, J.X. & Guan, X.L. Fluid–structure interaction in Z-shaped pipe with different supports. Acta Mech. Sin. 36, 513–523 (2020). https://doi.org/10.1007/s10409-019-00925-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-019-00925-3

Keywords

Navigation