Skip to main content
Log in

Dynamic responses of a piezoelectric cantilever plate under high–low excitations

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In this paper, the nonlinear dynamic responses of a piezoelectric cantilever plate near the first-order and second-order natural frequencies under the action of electromechanical coupling are studied by experiments and finite element (FE) methods. The influence of different excitation frequencies on the dynamical characteristics of piezoelectric cantilever plates is analyzed with the fixed excitation amplitude. First, an experimental setup is built, including a carbon fiber cantilever plate attached to a macro fiber composite (MFC) sheet. Then, the electromechanical coupling excitations are subjected to the plate with different frequencies, which are chosen near the first and second-order natural frequencies of the plate. The piezoelectric cantilever plate has periodical motions under a lower frequency excitation, and the motions of the plate become more complex after another high frequency excitation added in the physical field. The experimental results show that the motion of the piezoelectric cantilever plate changes from stable to unstable with high–low coupled resonant frequencies. At last, the FE study is carried out to compare and verify the experimental results and the effects of isotropic and orthotropic materials on the accuracy of natural frequencies results are also compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kovalovs, A., Barkanov, E., Gluhihs, S.: Active control of structures using macro-fiber composite (MFC). J. Phys. Conf. Ser. 93, 012034 (2007)

    Article  Google Scholar 

  2. Lin, J.C., Nien, M.H.: Adaptive modeling and shape control of laminated plates using piezoelectric actuators. J. Mater. Process. Tech. 189, 231–236 (2007)

    Article  Google Scholar 

  3. Debiasi, M., Bouremel, Y., Lu, Z., et al.: Deformation of the upper and lower surfaces of an airfoil by macro fiber composite actuators. AIAA Paper 2013–2405 (2013)

  4. Prazenica, R.J., Kim, D., Moncayo, H., et al.: Design, characterization, and testing of macro-fiber composite actuators for integration on a fixed-wing UAV. Proc. SPIE. 9057, 905715 (2014)

    Article  Google Scholar 

  5. Bilgen, O., Kochersberger, K.B., Inman, D.J., et al.: Novel, bidirectional, variable-camber airfoil via macro-fiber composite actuators. J. Aircraft. 47, 303–314 (2010)

    Article  Google Scholar 

  6. Bilgen, O., Kochersberger, K.B., Inman, D.J., et al.: Macro-fiber composite actuated simply supported thin airfoils. Smart Mater. Struct. 19, 055010 (2010)

    Article  Google Scholar 

  7. Wickramasinghe, V., Chen, Y., Martinez, M., et al.: Design and verification of a smart wing for an extreme-agility micro-air-vehicle. Smart Mater. Struct. 20, 125007 (2011)

    Article  Google Scholar 

  8. Binette, P., Dano, M., Gendron, G.: Active shape control of composite structures under thermal loading. Smart Mater. Struct. 18, 025007 (2009)

    Article  Google Scholar 

  9. Bilgen, O., Butt, L.M., Day, S.R., et al.: A novel unmanned aircraft with solid-state control surfaces: analysis and flight demonstration. J. Intel. Mat. Syst. Struct. 24, 147–167 (2013)

    Article  Google Scholar 

  10. Gao, L., Lu, Q., Fei, F., et al.: Active vibration control based on piezoelectric smart composite. Smart Mater. Struct. 22, 125032 (2013)

    Article  Google Scholar 

  11. Qin, Z.Y., Pang, X.J., Safaei, B., et al.: Free vibration analysis of rotating functionally graded CNT reinforced composite cylindrical shells with arbitrary boundary conditions. Compos. Struct. 220, 847–860 (2019)

    Article  Google Scholar 

  12. Qin, Z.Y., Chu, F.L., Zu, J.: Free vibrations of cylindrical shells with arbitrary boundary conditions: a comparison study. Int. J. Mech. Sci. 133, 91–99 (2017)

    Article  Google Scholar 

  13. Wankhade, R.L., Bajoria, K.M.: Vibration analysis of piezolaminated plates for sensing and actuating applications under dynamic excitation. Int. J. Struct. Stab. Dyn. 19, 1950121 (2019)

    Article  MathSciNet  Google Scholar 

  14. Narita, F., Shindo, Y., Mikami, M.: Analytical and experimental study of nonlinear bending response and domain wall motion in piezoelectric laminated actuators under AC electric fields. Acta Mater. 53, 4523–4529 (2005)

    Article  Google Scholar 

  15. Shindo, Y., Narita, F., Mikami, M., et al.: Nonlinear dynamic bending and domain wall motion in functionally graded piezoelectric actuators under AC electric fields: simulation and experiment. JSME Int. J. Ser. A Solid Mech. Mater. Eng. 49, 188–194 (2006)

    Article  Google Scholar 

  16. Parashar, S.K., Wagner, U.V.: Nonlinear longitudinal vibrations of transversally polarized piezoceramics: experiments and modeling. Nonlinear Dyn. 37, 51–73 (2004)

    Article  Google Scholar 

  17. Elsayed, A.M., Abo-Ismail, A.A., Eitaib, M.E., et al.: Characteristics of smart piezoelectric actuators for precise motion applications. JES 37, 1423–1432 (2009)

    Google Scholar 

  18. Jia, Y., Wei, X.Y., Xu, L., et al.: Multiphysics vibration FE model of piezoelectric macro fibre composite on carbon fibre composite structures. Compos. Part B-Eng. 161, 376–385 (2019)

    Article  Google Scholar 

  19. Andrew, J.L., Daniel, J.I.: Electromechanical modelling of a bistable plate with macro fiber composites under nonlinear vibrations. J. Sound Vib. 446, 326–342 (2019)

    Article  Google Scholar 

  20. Syta, A., Bowen, C.R., Kim, H.A., et al.: Experimental analysis of the dynamical response of energy harvesting devices based on bistable laminated plates. Meccanica 50, 1961–1970 (2015)

    Article  Google Scholar 

  21. Kundu, S., Nemade, H.B.: Modeling and simulation of a piezoelectric vibration energy harvester. Procedia Eng. 144, 568–575 (2016)

    Article  Google Scholar 

  22. Li, H.B., Wang, X., Chen, J.B.: Nonlinear electro-mechanical coupling vibration of corrugated graphene/piezoelectric laminated structures. Int. J. Mech. Sci. 150, 705–714 (2019)

    Article  Google Scholar 

  23. Lumentut, M.F., Howard, I.M.: Analytical and experimental comparisons of electromechanical vibration response of a piezoelectric bimorph beam for power harvesting. Mech. Syst. Signal Process. 36, 66–86 (2013)

    Article  Google Scholar 

  24. Lumentut, M.F., Howard, I.M.: Analytical modeling of self-powered electromechanical piezoelectric bimorph beams with multidirectional excitation. Int. J. Smart. Nano Mater. 2, 134–175 (2011)

    Article  Google Scholar 

  25. Chen, N., Yan, P., Ouyang, J.: An improved model analysis approach for hybrid thermo-piezoelectric micro actuator with thermo-piezoelectric coupling. Measurement 136, 517–524 (2019)

    Article  Google Scholar 

  26. Pourrostami, H., Kargarnovin, M.H., Zohoor, H.: Modeling and analytical solution of hybrid thermopiezoelectric micro actuator and performance study under changing of different parameters. Mech. Adv. Mater. Stru. 22, 785–793 (2015)

    Article  Google Scholar 

  27. Kumar, A., Chakraborty, D.: Effective properties of thermos-electro-mechanically coupled piezoelectric fiber reinforced composites. Mater. Design 30, 1216–1222 (2009)

    Article  Google Scholar 

  28. Rakotondrabe, M., Ivan, I.A.: Development and dynamic modeling of a new hybrid thermopiezoelectric microactuator. IEEE Trans. Rob. 26, 1077–1085 (2010)

    Article  Google Scholar 

  29. Kremer, E.: Low-frequency dynamics of systems with modulated high-frequency stochastic excitation. J. Sound Vib. 437, 422–436 (2018)

    Article  Google Scholar 

  30. Blekhman, I.I., Sorokin, V.S.: On the separation of fast and slow motions in mechanical systems with high-frequency modulation of the dissipation coefficient. J. Sound Vib. 329, 4936–4949 (2010)

    Article  Google Scholar 

  31. Blekhman, I.I., Sorokin, V.S.: On a “deterministic” explanation of the stochastic resonance phenomenon. Nonlinear Dyn. 93, 767–778 (2018)

    Article  Google Scholar 

  32. Qian, Y.H., Yan, D.M.: Fast-slow dynamics analysis of a coupled Duffing system with periodic excitation. Int. J. Bifurcat. Chaos 28, 1850148 (2018)

    Article  MathSciNet  Google Scholar 

  33. Han, X.J., Bi, Q.S.: Bursting oscillations in Duffing’s equation with slowly changing external forcing. Commun Nonlinear Sci. 16, 4146–4152 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the National Natural Science Foundation of China (Grants 11572006 and 11772010), the funding project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality (PHRIHLB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongxing Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Wang, S., Sun, L. et al. Dynamic responses of a piezoelectric cantilever plate under high–low excitations. Acta Mech. Sin. 36, 234–244 (2020). https://doi.org/10.1007/s10409-019-00923-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-019-00923-5

Keywords

Navigation