Skip to main content
Log in

Experimental and theoretical investigation of the failure behavior of a reinforced concrete target under high-energy penetration

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The dynamic mechanical properties of concrete and reinforced concrete targets subjected to high-speed projectile impact loading have a significant influence on the impact resistance of protective structures. In this study, high-speed projectile penetration and perforation of concrete and reinforced concrete structures was carried out to determine the high-energy impact loading. The failure behaviors of projectile penetration and perforation of the concrete and reinforced concrete targets were investigated, and the destruction characteristics of the targets were measured. An analytical model was established using the principle of minimum potential energy. The results show that the theoretical predictions are consistent with the experimental data, indicating that the energy method is effective for predicting the dynamic mechanical properties of concrete and reinforced concrete targets under high-speed projectile penetration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Charles, E., Anderson Jr., : Analytical models for penetration mechanics: a review. Int. J. Impact Eng. 106, 3–26 (2017). https://doi.org/10.1016/j.ijimpeng.2017.03.018

    Article  Google Scholar 

  2. Peng, Y., Wu, H., Fang, Q., et al.: Modified spherical cavity-expansion model for projectile penetration into concrete targets. Acta Mech. Sinica 35(3), 518–534 (2019). https://doi.org/10.1007/s10409-018-0815-7

    Article  MathSciNet  Google Scholar 

  3. Bernard, R.S.: Development of a projectile penetration theory. Report 2: deep penetration theory for homogeneous and layered targets (1976)

  4. Ning, J.G., Chen, L.W.: Fuzzy interface treatment in eulerian method. Sci. China Series E Technol. Sci. 47, 550–568 (2004). https://doi.org/10.1360/03ye0451

    Article  Google Scholar 

  5. Hanagud, S., Ross, B.: Large deformation, deep penetration theory for a compressible strain-hardening target material. AIAA J. 9, 905–911 (1971). https://doi.org/10.2514/3.6294

    Article  Google Scholar 

  6. Satapathy, S.S., Bless, S.J.: Cavity expansion resistance of brittle materials obeying a two-curve pressureshear behavior. J. Appl. Phys. 88, 4004–4012 (2000). https://doi.org/10.1063/1.1288007

    Article  Google Scholar 

  7. Oucif, C., Mauludin, L.M.: Numerical modeling of high velocity impact applied to reinforced concrete panel. Undergr. Space 4, 1–9 (2019). https://doi.org/10.1016/j.undsp.2018.04.007

    Article  Google Scholar 

  8. Xu, Yu., Keer, L.M., Luk, V.K.: Elastic-cracked model for penetration into unreinforced concrete targets with ogival nose projectiles. Int. J. Solids Struct. 34, 1479–1491 (1997). https://doi.org/10.1016/S0020-7683(96)00099-6

    Article  MATH  Google Scholar 

  9. Warren, T.L.: The effect of strain rate on the dynamic expansion of cylindrical cavities. Geol. Soci. Lond. Spec. Publ. 71, 67–85 (1999). https://doi.org/10.1115/1.2791764

    Article  Google Scholar 

  10. Xu, X.Z., Ma, T.B., Ning, J.G.: Failure analytical model of reinforced concrete slab under impact loading. Constr. Build. Mater. 223, 679–691 (2019). https://doi.org/10.1016/j.conbuildmat.2019.07.008

    Article  Google Scholar 

  11. Goodier, J.N.: On the mechanics of indentation and cratering in the solid targets of strain hardening metal by impact of hard and soft spheres. The 7th Symposium on Hypervelocity Impact III. pp. 215–259 (1965)

  12. Chadwick, P., Cox, A.D., Hopkins, H.G.: Mechanics of deep underground explosions. Philos. Trans. R. Soc. B 256, 235–300 (1964). https://doi.org/10.1098/rsta.1964.0006

    Article  MathSciNet  Google Scholar 

  13. Satapathy, S.S., Bless, S.J.: Cavity expansion resistance of brittle materials using spherical cavity expansion analysis. Mech. Mater. 23, 323–330 (1995). https://doi.org/10.1016/0167-6636(96)00022-1

    Article  Google Scholar 

  14. Young, C.W.: Penetration equations. Office Sci. Tech. Inf. Tech. Rep. 33, 837–846 (1970). https://doi.org/10.2172/562498

    Article  Google Scholar 

  15. Sliter, G.E.: Assessment of empirical concrete impact formulas. J. Struct. Div. 106, 1023–1045 (1980). https://doi.org/10.1016/0022-1694(80)90029-3

    Article  Google Scholar 

  16. Berriaud, C., Sokolovsky, A., Gueraud, R.: Local behaviour of reinforced concrete walls under hard missile impact. Nucl. Eng. Design 45, 457–469 (1978). https://doi.org/10.1016/0029-5493(78)90235-2

    Article  Google Scholar 

  17. Chelapati, C.V., Kennedy, R.P., Wall, I.B.: Probabilistic assessment of aircraft hazard for nuclear power plants. Nucl. Eng. Design 19, 333–364 (1972). https://doi.org/10.1016/0029-5493(72)90136-7

    Article  Google Scholar 

  18. Li, Q.M., Reid, S.R., Ahmad-Zaidi, A.M.: Critical impact energies for scabbing and perforation of concrete target. Nucl. Eng. Design 236, 1140–1148 (2006). https://doi.org/10.1016/j.nucengdes.2005.10.017

    Article  Google Scholar 

  19. Liu, J., Wu, C.Q., Chen, X.W.: Numerical study of ultra-high performance concrete under non-deformable projectile penetration. Constr. Build. Mater. 135, 447–458 (2017). https://doi.org/10.1016/j.conbuildmat.2016.12.216

    Article  Google Scholar 

  20. Chen, X.W., Fan, S.C., Li, Q.M.: Oblique and normal perforation of concrete targets by a rigid projectile. Int. J. Impact Eng. 30, 617–637 (2004). https://doi.org/10.1016/j.ijimpeng.2003.08.003

    Article  Google Scholar 

  21. Forrestal, M.J., Frew, D.J., Hanchak, S.J., et al.: Penetration of grout and concrete targets with ogive-nose steel projectiles. Int. J. Impact Eng. 18, 465–476 (1996). https://doi.org/10.1016/0734-743X(95)00048-F

    Article  MATH  Google Scholar 

  22. Deng, Y.J., Song, W.J., Chen, X.W.: Spherical cavity-expansion model for penetration of reinforced concrete targets. Acta Mech. Sinica 35, 535–551 (2019). https://doi.org/10.1007/s10409-018-0821-9

    Article  MathSciNet  Google Scholar 

  23. Forrestal, M.J., Altman, B.A., Cargile, J.D., et al.: An empirical equation for penetration depth of ogive-nose projectiles into concrete targets. Int. J. Impact Eng. 15, 395–405 (1994). https://doi.org/10.1016/0734-743X(94)80024-4

    Article  Google Scholar 

  24. Yankelevsky, D.Z.: Resistance of a concrete target to penetration of a rigid projectile—revisited. Int. J. Impact Eng. 106, 30–43 (2017). https://doi.org/10.1016/j.ijimpeng.2017.02.021

    Article  Google Scholar 

  25. Dancygier, A.N., Yankelevsky, D.Z.: High strength concrete response to hard projectile impact. Int. J. Impact Eng. 18, 583–599 (1996). https://doi.org/10.1016/0734-743X(95)00063-G

    Article  Google Scholar 

  26. Chen, X.W., Li, X.L., Huang, F.L., et al.: Normal perforation of reinforced concrete target by rigid projectile. Int. J. Impact Eng. 35, 1119–1129 (2008). https://doi.org/10.1016/j.ijimpeng.2008.01.002

    Article  Google Scholar 

  27. Ning, J.G., Song, W.D., Yang, G.T.: Failure analysis of plastic spherical shells impacted by a projectile. Int. J. Impact Eng. 32, 1464–1484 (2006). https://doi.org/10.1016/j.ijimpeng.2004.11.001

    Article  Google Scholar 

  28. Karthik, M.M., Mander, J.B.: Stress-block parameters for unconfined and confined concrete based on a unified stress–strain model. J. Struct. Eng. 137, 270–273 (2011). https://doi.org/10.1061/(ASCE)ST.1943-541X.0000294

    Article  Google Scholar 

Download references

Acknowledgements

This project is supported by the National Natural Science Foundation of China (Grant 11822203) and the China Postdoctoral Science Foundation (Grant 2018M641209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangzhao Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, F., Ma, T. & Xu, X. Experimental and theoretical investigation of the failure behavior of a reinforced concrete target under high-energy penetration. Acta Mech. Sin. 36, 116–129 (2020). https://doi.org/10.1007/s10409-019-00901-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-019-00901-x

Keywords

Navigation