Advertisement

Acta Mechanica Sinica

, Volume 35, Issue 4, pp 750–762 | Cite as

Numerical study on shock-accelerated heavy gas cylinders with diffusive interfaces

  • Dongdong Li
  • Ben Guan
  • Ge WangEmail author
Research Paper
  • 106 Downloads

Abstract

Interactions of shock waves and heavy gas cylinders with different diffusive interfaces are numerically investigated. Comparisons among these interfaces are made in terms of cylinder morphology, wave system evolution, fluid mixing, and circulation generation. Navier–Stokes equations are solved in the present work to simulate the complex multi-fluid flow. A fifth-order weighted essentially non-oscillatory scheme is used to compute the numerical flux. The influence of interface diffusion is revealed by numerical results. Cylinders with similar geometric scale but different diffusion interface have significant similarities in hydrodynamic characteristics, including the interface morphology, shock focusing, and molecular mixing, as well as circulation deposition. For cases with more severe interface diffusion, the cylinder develops into more regular vortex pairs. The diffusive interface significantly mitigates the strength of the reflected shock wave and weakens the shock focusing capability. Some interface evolution features are also recorded and analyzed. The diffusive interface brings about slower molecular mixing and less circulation generation. The circulation deposition on different interfaces is quantitatively investigated and compared with the theoretical models. The theoretical models are found to be applicable to the scenarios of diffusive interfaces.

Keywords

Shock–bubble interaction Interfacial instability Diffusive interface Circulation model 

References

  1. 1.
    Ranjan, D., Oakley, J., Bonazza, R.: Shock–bubble interactions. Annu. Rev. Fluid Mech. 43, 117–140 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arnett, W.D., Bahcall, J.N., Kirshner, R.P., et al.: Supernova 1987A. Ann. Rev. Astron. Astrophys. 27, 629–700 (1989)CrossRefGoogle Scholar
  3. 3.
    Lindl, J.D., Mccrory, R.L., Campbell, E.M.: Progress toward ignition and burn propagation in inertial confinement fusion. Phys. Today 45, 32–40 (1992)CrossRefGoogle Scholar
  4. 4.
    Yang, J., Kubota, T., Zukoski, E.E.: Applications of shock-induced mixing to supersonic combustion. AIAA J. 31, 854–862 (2012)CrossRefGoogle Scholar
  5. 5.
    Richtmyer, R.D.: Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Math. 3, 297–319 (1960)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Meshkov, E.E.: Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn. 4, 101–104 (1969)CrossRefGoogle Scholar
  7. 7.
    Rudinger, G., Somers, L.M.: Behaviour of small regions of different gases carried in accelerated gas flows. J. Fluid Mech. 7, 161–176 (1960)CrossRefzbMATHGoogle Scholar
  8. 8.
    Haas, J.F., Sturtevan, B.: Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. J. Fluid Mech. 181, 41–76 (1987)CrossRefGoogle Scholar
  9. 9.
    Capuano, M., Bogey, C., Spelt, P.D.M.: Simulations of viscous and compressible gas–gas flows using high-order finite difference schemes. J. Comput. Phys. 361, 56–81 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Picone, J.M., Boris, J.P.: Vorticity generation by shock propagation through bubbles in a gas. J. Fluid Mech. 189, 23–51 (1988)CrossRefGoogle Scholar
  11. 11.
    Haimovich, O., Frankel, S.H.: Numerical simulations of compressible multicomponent and multiphase flow using a high-order targeted ENO (TENO) finite-volume method. Comput. Fluids 146, 105–116 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Yoo, Y.L., Sung, H.G.: Numerical investigation of an interaction between shock waves and bubble in a compressible multiphase flow using a diffuse interface method. Int. J. Heat Mass Transf. 127, 210–221 (2018)CrossRefGoogle Scholar
  13. 13.
    Layes, G., Jourdan, G., Houas, L.: Distortion of a spherical gaseous interface accelerated by a plane shock wave. Phys. Rev. Lett. 91, 174502 (2003)CrossRefGoogle Scholar
  14. 14.
    Giordano, J., Burtschell, Y.: Richtmyer–Meshkov instability induced by shock–bubble interaction: numerical and analytical studies with experimental validation. Phys. Fluids 18, 036102 (2006)CrossRefGoogle Scholar
  15. 15.
    Zhu, Y., Yang, Z., Pan, Z., et al.: Numerical investigation of shock-SF6 bubble interaction with different mach numbers. Comput. Fluids 177, 78–86 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Zeng, W., Pan, J., Ren, Y., et al.: Numerical study on the turbulent mixing of planar shock-accelerated triangular heavy gases interface. Acta Mech. Sin. 34, 855–870 (2018)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Si, T., Zhai, Z., Luo, X.: Interaction of strong converging shock wave with SF6 gas bubble. Sci. China Phys. Mech. 61, 064711 (2018)CrossRefGoogle Scholar
  18. 18.
    Ou, J., Ding, J., Luo, X., et al.: Effects of Atwood number on shock focusing in shock–cylinder interaction. Exp. Fluids 59, 29 (2018)CrossRefGoogle Scholar
  19. 19.
    Zhai, Z., Si, T., Zou, L., et al.: Jet formation in shock-heavy gas bubble interaction. Acta Mech. Sin. 29, 24–35 (2013)CrossRefGoogle Scholar
  20. 20.
    Jacobs, J.W.: Shock-induced mixing of a light-gas cylinder. J. Fluid Mech. 234, 629–649 (1992)CrossRefGoogle Scholar
  21. 21.
    Tomkins, C., Kumar, S., Orlicz, G., et al.: An experimental investigation of mixing mechanisms in shock-accelerated flow. J. Fluid Mech. 611, 131–150 (2008)CrossRefzbMATHGoogle Scholar
  22. 22.
    Shankar, S.K., Kawai, S., Lele, S.K.: Two-dimensional viscous flow simulation of a shock accelerated heavy gas cylinder. Phys. Fluids 23, 024102 (2011)CrossRefGoogle Scholar
  23. 23.
    Zou, L., Liao, S., Liu, C., et al.: Aspect ratio effect on shock-accelerated elliptic gas cylinders. Phys. Fluids 28, 297–319 (2016)CrossRefGoogle Scholar
  24. 24.
    Yang, J., Kubota, T., Zukoski, E.E.: Model for characterization of a vortex pair formed by shock passage over a light-gas inhomogeneity. J. Fluid Mech. 258, 217–244 (1994)CrossRefzbMATHGoogle Scholar
  25. 25.
    Samtaney, R., Zabusky, N.J.: Circulation deposition on shock-accelerated planar and curved density-stratified interfaces: models and scaling laws. J. Fluid Mech. 269, 45–78 (1994)CrossRefGoogle Scholar
  26. 26.
    Gupta, S., Zhang, S., Zabusky, N.J.: Shock interaction with a heavy gas cylinder: emergence of vortex, bilayers and vortex-accelerated baroclinic circulation generation. Laser Part. Beams 21, 443–448 (2003)CrossRefGoogle Scholar
  27. 27.
    Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5, 506–517 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Ruuth, S.J.: A new class of optimal high-order strong-stability-preserving time discretization methods. SIAM J. Numer. Anal. 40, 469–491 (2003)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Gottlieb, S., Shu, C.W.: Total variation diminishing Runge–Kutta schemes. Math. Comput. 67, 73–85 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Verwer, J.G., Sommeijer, B.P., Hundsdorfer, W.: RKC time-stepping for advection–diffusion–reaction problems. J. Comput. Phys. 201, 61–79 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Niederhaus, J.H.J., Greenough, J.A., Oakley, J.G., et al.: A computational parameter study for the three-dimensional shock–bubble interaction. J. Fluid Mech. 594, 85–124 (2008)CrossRefzbMATHGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Aerospace and Civil EngineeringHarbin Engineering UniversityHarbinChina

Personalised recommendations