Skip to main content
Log in

Molecular simulation of diffusion of rigidity-tuned nanoparticles in biological hydrogels

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The penetration capability of drug nano-carriers (NCs) in biological hydrogels such, as mucus and tumor interstitial matrix, typically influence the efficiency of drug delivery. Therefore, understanding the effect of the physicochemical properties of drug carriers on their diffusion capability in biological hydrogels is important for the design and optimization of nano-carriers. Here, using a coarse-grained molecular dynamics model, we studied how the rigidity of NCs affected their diffusivity in biological hydrogels. The results showed that semi-elastic NCs have higher diffusivity than the hard and soft NCs. Furthermore, the affinity between the NCs and biological hydrogels and the size ratio between the hydrogel meshes and NCs also affect NC diffusivity. Further analysis revealed the mechanism that the deformation of the NCs dominates their diffusivity. These findings demonstrate that the rigidity of NCs is a key parameter in designing efficient NCs for deep penetration into biological hydrogels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lai, S.K., Wang, Y.Y., Wirtz, D., et al.: Micro- and macrorheology of mucus. Adv. Drug Deliv. Rev. 61, 86–100 (2009)

    Article  Google Scholar 

  2. Theocharis, A.D., Skandalis, S.S., Gialeli, C., et al.: Extracellular matrix structure. Adv. Drug Deliv. Rev. 97, 4–27 (2016)

    Article  Google Scholar 

  3. Johansson, M.E.V., Henrik, S.V., Hansson, G.C.: The gastrointestinal mucus system in health and disease. Nat. Rev. Gastroenterol. Hepatol. 10, 352–361 (2013)

    Article  Google Scholar 

  4. Lai, S.K., Wang, Y.Y., Hanes, J.: Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv. Drug Deliv. Rev. 61, 158–171 (2009)

    Article  Google Scholar 

  5. Shan, W., Zhu, X., Tao, W., et al.: Enhanced oral delivery of protein drugs using zwitterion-functionalized nanoparticles to overcome both the diffusion and absorption barriers. ACS Appl. Mater. Interfaces 8, 25444–25453 (2016)

    Article  Google Scholar 

  6. Wei, S., Xi, Z., Min, L., et al.: Overcoming the diffusion barrier of mucus and absorption barrier of epithelium by self-assembled nanoparticles for oral delivery of insulin. ACS Nano 9, 2345–2356 (2015)

    Article  Google Scholar 

  7. Tang, B.C., Dawson, M., Lai, S.K., et al.: Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier. Proc. Natl. Acad. Sci. USA 106, 19268–19273 (2009)

    Article  Google Scholar 

  8. Wang, Y.Y., Lai, S.K., Suk, J.S., et al.: Addressing the PEG mucoadhesivity paradox to engineer nanoparticles that “slip” through the human mucus barrier. Angew. Chem. 47, 9726–9729 (2008)

    Article  Google Scholar 

  9. Lai, S.K., O’Hanlon, D.E., Harrold, S., et al.: Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc. Natl. Acad. Sci. USA 104, 1482–1487 (2007)

    Article  Google Scholar 

  10. Yu, M., Xu, L., Tian, F., et al.: Rapid transport of deformation-tuned nanoparticles across biological hydrogels and cellular barriers. Nat. Commun. 9, 2607 (2018)

    Article  Google Scholar 

  11. Wang, J., Yang, Y., Yu, M., et al.: Diffusion of rod-like nanoparticles in non-adhesive and adhesive porous polymeric gels. J. Mech. Phys. Solids 112, 431–457 (2018)

    Article  MathSciNet  Google Scholar 

  12. Wang, J., Shi, X.: Molecular dynamics simulation of diffusion of nanoparticles in mucus. Acta Mech. Solida Sin. 30, 241–247 (2017)

    Article  Google Scholar 

  13. Yu, M., Wang, J., Yang, Y., et al.: Rotation-facilitated rapid transport of nanorods in mucosal tissues. Nano Lett. 16, 7176–7182 (2016)

    Article  Google Scholar 

  14. Stylianopoulos, T., Poh, M.-Z., Insin, N., et al.: Diffusion of particles in the extracellular matrix: the effect of repulsive electrostatic interactions. Biophys. J. 99, 1342–1349 (2010)

    Article  Google Scholar 

  15. Stylianopoulos, T., Diop-Frimpong, B., Munn, L.L., et al.: Diffusion anisotropy in collagen gels and tumors: the effect of fiber network orientation. Biophys. J. 99, 3119–3128 (2010)

    Article  Google Scholar 

  16. Allen, T.M., Cullis, P.R.: Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev. 65, 36–48 (2013)

    Article  Google Scholar 

  17. Bastiat, G., Pritz, C.O., Roider, C., et al.: A new tool to ensure the fluorescent dye labeling stability of nanocarriers: a real challenge for fluorescence imaging. J. Control. Release 170, 334–342 (2013)

    Article  Google Scholar 

  18. Gulati, M., Grover, M., Singh, S., et al.: Lipophilic drug derivatives in liposomes. Int. J. Pharm. 165, 129–168 (1998)

    Article  Google Scholar 

  19. Yue, T., Zhang, X.: Molecular modeling of the pathways of vesicle–membrane interaction. Soft Matter 9, 559–569 (2013)

    Article  Google Scholar 

  20. Yi, X., Gao, H.: Kinetics of receptor-mediated endocytosis of elastic nanoparticles. Nanoscale 9, 454–463 (2017)

    Article  Google Scholar 

  21. Yi, X., Shi, X., Gao, H.: Cellular uptake of elastic nanoparticles. Phys. Rev. Lett. 107, 098101 (2011)

    Article  Google Scholar 

  22. Sun, J., Zhang, L., Wang, J., et al.: Tunable rigidity of (polymeric core)–(lipid shell) nanoparticles for regulated cellular uptake. Adv. Mater. 27, 1402–1407 (2015)

    Article  Google Scholar 

  23. Yuan, H., Huang, C., Li, J., et al.: One-particle-thick, solvent-free, coarse-grained model for biological and biomimetic fluid membranes. Phys. Rev. E 82, 011905 (2010)

    Article  Google Scholar 

  24. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grands 11422215, 11272327, and 11672079) and partly supported by the Opening Fund of State Key Laboratory of Nonlinear Mechanics and the Natural Science Foundation of Zhejiang Province (Grant LQ17B030003). The computation was mainly supported by the Supercomputing Center of Chinese Academy of Sciences (SCCAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinghua Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, F., Wang, H., Li, H. et al. Molecular simulation of diffusion of rigidity-tuned nanoparticles in biological hydrogels. Acta Mech. Sin. 35, 376–383 (2019). https://doi.org/10.1007/s10409-019-00858-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-019-00858-x

Keywords

Navigation