Skip to main content
Log in

Single-leg weight limit of fixation model of simple supracondylar fracture of femur

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Early postoperative rehabilitation training for supracondylar fracture of femur aids in accelerating healing with shorter recovery periods. Presently, clinical studies on early postoperative weight training are still in the nascent stage. The weight-bearing capacity at different healing stages typically depends on clinical experience, and there is a lack of standards to quantify the weight that is conducive to healing of fractures. In this paper, a three-dimensional (3D) geometric model of the femur is obtained using imaging data, a locking plate fixation model of a simple supracondylar fracture of the femur, considering the angle and spatial direction of the fracture surface, is established, the stress distribution and load transmission mechanism of the fracture fixation model in a single-leg standing posture are studied, and the weight-bearing capacity of a standing single leg at the early stage of fracture is given. This provides the basis for objective quantification of early postoperative weight-bearing capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Kolmert, L., Wulff, K.: Epidemiology and treatment of distal femoral fractures in adults. Acta Orthop. Scand. 53, 957–962 (1982)

    Article  Google Scholar 

  2. Richard, E.B., Christopher, G.M., Theerachai, A.: AO principles of fracture management 2 vols. (3rd edn.) Aotrauma (2017)

  3. Kubiak, E.N., Fulkerson, E., Strauss, E., et al.: The evolution of locked plates. J. Bone Jt. Surg. (Am.) 88, 189–200 (2006)

    Google Scholar 

  4. Liang, B., Ding, Z., Shen, J., et al.: A distal femoral supra-condylar plate: biomechanical comparison with condylar plate and first clinical application for treatment of supracondylar fracture. Int. Orthop. 36, 1673–1679 (2012)

    Article  Google Scholar 

  5. Macleod, A.R., Pankaj, P.: Pre-operative planning for fracture fixation using locking plates: device configuration and other considerations. Injury 49, 12–18 (2018)

    Article  Google Scholar 

  6. Claes, L.: Biomechanical principles and mechanobiologic aspects of flexible and locked plating. J. Orthop. Trauma 25, 4–7 (2011)

    Article  Google Scholar 

  7. Perren, S.M.: Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: choosing a new balance between stability and biology. J. Bone Jt. Surg. (Bri.) 84, 1093–1100 (2002)

    Article  Google Scholar 

  8. Feng, X.Q., Lee, P.V.S., Lim, C.T.: Preface: molecular, cellular, and tissue mechanobiology. Acta. Mech. Sin. 33, 219–221 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Adachi, T., Kameo, Y.: Computational Biomechanics of Bone Adaptation by Remodeling, vol. 578, pp. 231–259. Springer, Berlin (2018)

    Google Scholar 

  10. Qin, Q.H., Wang, Y.N.: A mathematical model of cortical bone remodeling at cellular level under mechanical stimulus. Acta. Mech. Sin. 28, 1678–1692 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kenwright, J., Goodship, A., Evans, M., et al.: The influence of intermittent micromovement upon the healing of experimental fractures. Orthopedics 7, 481–484 (1984)

    Google Scholar 

  12. Goodship, A.E., Cunningham, J.L., Kenwright, J., et al.: Strain rate and timing of stimulation in mechanical modulation of fracture healing. Clin. Orthop. Relat. Res. 355, 105–115 (1998)

    Article  Google Scholar 

  13. Arazi, M., Oktar, M.N., Memik, R., et al.: Early weight-bearing after statically locked reamed intramedullary nailing of comminuted femoral fractures: is it a safe procedure? J. Trauma 50, 711–716 (2001)

    Article  Google Scholar 

  14. Adam, P., Bonnomet, F., Ehlinger, M.: Advantage and limitations of a minimally-invasive approach and early weight bearing in the treatment of tibial shaft fractures with locking plates. Orthop. Traumatol. Sur. 98, 564–569 (2012)

    Article  Google Scholar 

  15. Kalmet, P., Sanduleanu, S., Horn, Y.V., et al.: Is early weight bearing allowed in surgically treated talar neck fractures? J. Orthop. Case Rep. 6, 73–74 (2016)

    Google Scholar 

  16. Elkins, J., Lawrence, M.J., Lujan, T., et al.: Motion predicts clinical callus formation: construct-specific finite element analysis of supracondylar femoral fractures. J. Bone Jt. Surg. (Am.) 98, 276–284 (2016)

    Article  Google Scholar 

  17. Bottlang, M., Tsai, S., Bliven, E.K., et al.: Dynamic stabilization with active locking plates delivers faster, stronger, and more symmetric fracture-healing. J. Bone Jt. Surg. 98, 466–474 (2016)

    Article  Google Scholar 

  18. Lotz, J.C., Gerhart, T.N., Hayes, W.C.: Mechanical properties of metaphyseal bone in the proximal femur. J. Biomech. 24, 317–329 (1991)

    Article  Google Scholar 

  19. Lotz, J.C., Gerhart, T.N., Hayes, W.C.: Mechanical properties of trabecular bone from the proximal femur: a quantitative CT study. J. Comput. Assist. Tomogr. 14, 107–114 (1990)

    Article  Google Scholar 

  20. Rho, J.Y., Hobatho, M.C., Ashman, R.B.: Relations of mechanical properties to density and CT numbers in human bone. Med. Eng. Phys. 17, 347–355 (1995)

    Article  Google Scholar 

  21. Rho, J.Y., Kuhn-Spearing, L., Zioupos, P.: Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 20, 92–102 (1998)

    Article  Google Scholar 

  22. Gong, H., Zhang, M., Fan, Y., et al.: Relationships between femoral strength evaluated by nonlinear finite element analysis and BMD, material distribution and geometric morphology. Ann. Biomed. Eng. 40, 1575–1585 (2012)

    Article  Google Scholar 

  23. Linwei, L., Meng, G., Gong, H., et al.: Tissue level microstructure and mechanical properties of the femoral head in the proximal femur of fracture patients. Acta. Mech. Sin. 31, 259–267 (2015)

    Article  Google Scholar 

  24. Carter, D.R., Hayes, W.C.: The compressive behavior of bone as a two-phase porous structure. J. Bone Jt. Surg. (Am.) 59, 954–962 (1977)

    Article  Google Scholar 

  25. Carter, D.R., Hayes, W.C.: Bone compressive strength: the influence of density and strain rate. Science 194, 1174–1176 (1976)

    Article  Google Scholar 

  26. Morgan, E.F., Bayraktar, H.H., Keaveny, T.M.: Trabecular bone modulus-density relationships depend on anatomic site. J. Biomech. 36, 897–904 (2003)

    Article  Google Scholar 

  27. Wirtz, D.C., Schiffers, N., Pandorf, T., et al.: Critical evaluation of known bone material properties to realize anisotropic FE-simulation of the proximal femur. J. Biomech. 33, 1325–1330 (2000)

    Article  Google Scholar 

  28. Kopperdahl, D.L., Aspelund, T., Hoffmann, P.F., et al.: Assessment of incident spine and hip fractures in women and men using finite element analysis of CT scans. J. Bone Miner. Res. 29, 570–580 (2014)

    Article  Google Scholar 

  29. Keyak, J.H., Skinner, H.B.: Three-dimensional finite element modelling of bone: effects of element size. J. Biomed. Eng. 14, 483–489 (1992)

    Article  Google Scholar 

  30. Bessho, M., Ohnishi, I., Matsuyama, J., et al.: Prediction of strength and strain of the proximal femur by a CT-based finite element method. J. Biomech. 40, 1745–1753 (2007)

    Article  Google Scholar 

  31. Garcia, J.M., Doblare, M., Seral, B., et al.: Three-dimensional finite element analysis of several internal and external pelvis fixations. J. Biomech. Eng. 122, 516–522 (2000)

    Article  Google Scholar 

  32. Keyak, J.H., Rossi, S.A., Jones, K.A., et al.: Prediction of femoral fracture load using automated finite element modeling. J. Biomech. 31, 125–133 (1998)

    Article  Google Scholar 

  33. Dalstra, M., Huiskes, R., Erning, L.V.: Development and validation of a three-dimensional finite element model of the pelvic bone. J. Biomech. Eng. 117, 272–278 (1995)

    Article  Google Scholar 

  34. Perillo-Marcone, A., Alonso-Vazquez, A., Taylor, M.: Assessment of the effect of mesh density on the material property discretisation within QCT based FE models: a practical example using the implanted proximal tibia. Comput. Methods Biomech. 6, 17–26 (2003)

    Article  Google Scholar 

  35. Isaksson, H., Wilson, W., Donkelaar, C.C., et al.: Comparison of biophysical stimuli for mechano-regulation of tissue differentiation during fracture healing. J. Biomech. 39, 1507–1516 (2006)

    Article  Google Scholar 

  36. ASTM F1314-2007.: Standard specification for wrought nitrogen strengthened 22 chromium-13 nickel-5 manganese-2.5 molybdenum stainless steel alloy bar and wire for surgical implants (2007)

  37. Döbele, S., Horn, C., Eichhorn, S., et al.: The dynamic locking screw (DLS) can increase interfragmentary motion on the near cortex of locked plating constructs by reducing the axial stiffness. Langenbeck. Arch. Surg. 395, 421–428 (2010)

    Article  Google Scholar 

  38. Chantarapanich, N., Sitthiseripratip, K., Mahaisavariya, B., et al.: Biomechanical performance of retrograde nail for supracondylar fractures stabilization. Med. Biol. Eng. Comput. 54, 939–952 (2016)

    Article  Google Scholar 

  39. Mehboob, H., Kim, J., Mehboob, A., et al.: How post-operative rehabilitation exercises influence the healing process of radial bone shaft fractures fixed by a composite bone plate. Compos. Struct. 159, 307–315 (2017)

    Article  Google Scholar 

  40. Miramini, S., Zhang, L.H., Richardson, M., et al.: The relationship between interfragmentary movement and cell differentiation in early fracture healing under locking plate fixation. Aust. Phys. Eng. S. 39, 123–133 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grants 11672297, 11872273, and 11472191), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant XDB22020200), and the Opening Fund of the State Key Laboratory of Nonlinear Mechanics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Hong Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, GY., Xu, XH., Wang, JH. et al. Single-leg weight limit of fixation model of simple supracondylar fracture of femur. Acta Mech. Sin. 35, 926–939 (2019). https://doi.org/10.1007/s10409-019-00855-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-019-00855-0

Keywords

Navigation