Advertisement

Acta Mechanica Sinica

, Volume 35, Issue 4, pp 879–893 | Cite as

Free vibration analysis of a spinning piezoelectric beam with geometric nonlinearities

  • Wei Li
  • Xiao-Dong YangEmail author
  • Wei Zhang
  • Yuan Ren
  • Tian-Zhi Yang
Research Paper
  • 128 Downloads

Abstract

The linear and non-linear free vibrations of a spinning piezoelectric beam are studied by considering geometric nonlinearities and electromechanical coupling effect. The non-linear differential equations of the spinning piezoelectric beam governing two transverse vibrations are derived by using transformation of two Euler angles and the extended Hamilton principle, wherein an additional piezoelectric coupling term and different linear terms are present in contrast to the traditional shaft model. Linear frequencies are obtained by solving the standard eigenvalues of the linearized system directly, and the non-linear frequencies and non-linear complex modes are achieved by using the method of multiple scales. For free vibrations analysis of a spinning piezoelectric beam, the non-linear modal motions are investigated as forward and backward precession with different spinning speeds. The responses to the initial conditions for this gyroscopic system are studied and a beat phenomenon is found, which are then validated by numerical simulation. The influences of some parameters such as electrical resistance, rotary inertia and spinning speeds to the non-linear dynamics of a spinning piezoelectric beam are investigated.

Keywords

Spinning piezoelectric beam Free vibrations Non-linear frequencies Complex modes 

Notes

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Grants 11672007 and 11832002), Beijing Natural Science Foundation (Grant 3172003), and Graduate Student Science and Technology Foundation of Beijing University of Technology (Grant ykj-2017-00045).

References

  1. 1.
    Yang, J.S., Fang, H.Y.: Analysis of a rotating elastic beam with piezoelectric films as an angular rate sensor. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 798–804 (2002)CrossRefGoogle Scholar
  2. 2.
    Yang, J.S., Fang, H.Y.: A piezoelectric gyroscope based on extensional vibrations of rods. Int. J. Appl. Electromagn. Mech. 17, 289–300 (2003)CrossRefGoogle Scholar
  3. 3.
    Bhadbhade, V., Jahli, N., Mahmoodi, S.N.: A novel piezoelectrically actuated flexural/torsional vibrating beam gyroscope. J. Sound Vib. 311, 1305–1324 (2008)CrossRefGoogle Scholar
  4. 4.
    Lajimi, S.A.M., Heppler, G.R., Abdel-Rahman, E.M.: A mechanical–thermal noise analysis of a nonlinear microgyroscope. Mech. Syst. Signal Process. 83, 163–175 (2017)CrossRefGoogle Scholar
  5. 5.
    Shahgholi, M., Khadem, S.E., Bab, S.: Free vibration analysis of a nonlinear slender rotating shaft with simply support conditions. Mech. Mach. Theory 82, 128–140 (2014)CrossRefGoogle Scholar
  6. 6.
    Nezhad, H.S.A., Hosseini, S.A.A., Zamanian, M.: Flexural–flexural–extensional–torsional vibration analysis of composite spinning shafts with geometrical nonlinearity. Nonlinear Dyn. 89, 651–690 (2017)CrossRefzbMATHGoogle Scholar
  7. 7.
    Oskouie, M.F., Ansari, R., Sadeghi, F.: Nonlinear vibration analysis of fractional viscoelastic Euler–Bernoulli nanobeams based on the surface stress theory. Acta Mech. Solida Sin. 30, 416–424 (2017)CrossRefGoogle Scholar
  8. 8.
    Zhao, H.S., Zhang, Y., Lie, S.T.: Explicit frequency equations of free vibration of a nonlocal Timoshenko beam with surface effects. Acta Mech. Sin. 34, 676–688 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Guan, M.J., Liao, W.H.: Design and analysis of a piezoelectric energy harvester for rotational motion system. Energy Convers. Manag. 111, 239–244 (2016)CrossRefGoogle Scholar
  10. 10.
    Zou, H.X., Zhang, W.M., Li, W.B., et al.: Design and experimental investigation of a magnetically coupled vibration energy harvester using two inverted piezoelectric cantilever beams for rotational motion. Energy Convers. Manag. 148, 1391–1398 (2017)CrossRefGoogle Scholar
  11. 11.
    Fang, F., Xia, G.H., Wang, J.G.: Nonlinear dynamic analysis of cantilevered piezoelectric energy harvesters under simultaneous parametric and external excitations. Acta Mech. Sin. 34, 561–577 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Korayem, M.H., Homayooni, A.: The size-dependent analysis of multilayer micro-cantilever plate with piezoelectric layer incorporated voltage effect based on a modified couple stress theory. Eur. J. Mech. A Solids 61, 59–72 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Zhang, J.R., Guo, Z.X., Zhang, Y., et al.: Inner structural vibration isolation method for a single control moment gyroscope. J. Sound Vib. 361, 78–98 (2016)CrossRefGoogle Scholar
  14. 14.
    Zhang, D.Y., Xia, Y., Scarpa, F., et al.: Interfacial contact stiffness of fractal rough surfaces. Sci. Rep. 7, 12874 (2017)CrossRefGoogle Scholar
  15. 15.
    He, T., Xie, Y., Shan, Y.C., et al.: Localizing two acoustic emission sources simultaneously using beamforming and singular value decomposition. Ultrasonics 85, 3–22 (2018)CrossRefGoogle Scholar
  16. 16.
    Ding, H., Zhu, M.H., Zhang, Z., et al.: Free vibration of a rotating ring on an elastic foundation. Int. J. Appl. Mech. 9, 1750051 (2017)CrossRefGoogle Scholar
  17. 17.
    Qin, Z., Chu, F., Zu, J.: Free vibrations of cylindrical shells with arbitrary boundary conditions: a comparison study. Int. J. Mech. Sci. 133, 91–99 (2017)CrossRefGoogle Scholar
  18. 18.
    Lang, G.F.: Matrix madness and complex confusion. A review of complex modes from multiple viewpoints. Sound Vib. 46, 8–12 (2012)CrossRefGoogle Scholar
  19. 19.
    Yang, X.D., Yang, J.H., Qian, Y.J., et al.: Dynamics of a beam with both axial moving and spinning motion: an example of bi-gyroscopic continua. Eur. J. Mech. A Solids 69, 231–237 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Rosenberg, R.M.: The normal modes of nonlinear n-degree-of-freedom systems. ASME J. Appl. Mech. 29, 7–14 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Nayfeh, A.H., Nayfeh, S.A.: On nonlinear modes of continuous systems. J. Vib. Acoust. 116, 129–136 (1994)CrossRefGoogle Scholar
  22. 22.
    Nayfeh, A.H., Nayfeh, S.A.: Nonlinear normal-modes of a continuous system with quadratic nonlinearities. J. Vib. Acoust. 117, 199–205 (1995)CrossRefGoogle Scholar
  23. 23.
    Shaw, S.W., Pierre, C.: Nonlinear normal-modes and invariant-manifolds. J. Sound Vib. 150, 170–173 (1991)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Shaw, S.W., Pierre, C.: Normal-modes for nonlinear vibratory-systems. J. Sound Vib. 164, 85–124 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Carlos, E.N.M., César, T.S., Odulpho, G.P.B.N., et al.: Non-linear modal analysis for beams subjected to axial loads: analytical and finite-element solutions. Int. J. Non-Linear Mech. 43, 551–561 (2008)CrossRefzbMATHGoogle Scholar
  26. 26.
    Uspensky, B., Avramov, K.: Nonlinear modes of piecewise linear systems under the action of periodic excitation. Nonlinear Dyn. 76, 1151–1156 (2013)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Arvin, H., Nejad, F.B.: Non-linear modal analysis of a rotating beam. Int. J. Non-Linear Mech. 46, 877–897 (2011)CrossRefGoogle Scholar
  28. 28.
    Qian, Y.J., Yang, X.D., Wu, H., et al.: Gyroscopic modes decoupling method in parametric instability analysis of gyroscopic systems. Acta Mech. Sin. 34, 963–969 (2018)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Arquier, R., Bellizzi, S., Bouc, R., et al.: Two methods for the computation of nonlinear modes of vibrating systems at large amplitudes. Comput. Struct. 84, 1565–1576 (2006)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Laxalde, D., Thouverez, F.: Complex non-linear modal analysis for mechanical systems: application to turbomachinery bladings with friction interfaces. J. Sound Vib. 322, 1009–1025 (2009)CrossRefGoogle Scholar
  31. 31.
    Kuether, R.J., Allen, M.S.: A numerical approach to directly compute nonlinear normal modes of geometrically nonlinear finite element models. Mech. Syst. Signal Process. 46, 1–15 (2014)CrossRefGoogle Scholar
  32. 32.
    Pesheck, E., Pierre, C., Shaw, S.W.: A new Galerkin-based approach for accurate non-linear normal modes through invariant manifolds. J. Sound Vib. 249, 971–993 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Renson, L., Deliege, G., Kerschen, G.: An effective finite-element-based method for the computation of nonlinear normal modes of nonconservative systems. Meccanica 49, 1901–1916 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Pan, Y., Liu, X.D., Shan, Y.C., et al.: Complex modal analysis of serpentine belt drives based on beam coupling model. Mech. Mach. Theory 116, 162–177 (2017)CrossRefGoogle Scholar
  35. 35.
    Qin, Z.Y., Han, Q.K., Chu, F.L.: Analytical model of bolted disk–drum joints and its application to dynamic analysis of jointed rotor. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 228, 646–663 (2014)CrossRefGoogle Scholar
  36. 36.
    Hong, J., Yu, P.C., Zhang, D.Y., et al.: Modal characteristics analysis for a flexible rotor with non-smooth constraint due to intermittent rub-impact. Chin. J. Aeronaut. 31, 498–513 (2018)CrossRefGoogle Scholar
  37. 37.
    Sturla, F.A., Argento, A.: Free and forced vibrations of a spinning viscoelastic beam. J. Vib. Acoust. 118, 463–468 (1996)CrossRefGoogle Scholar
  38. 38.
    Ishida, Y., Inoue, T.: Nonstationary oscillations of a nonlinear rotor during acceleration through the major critical speed—influence of internal resonance. JSME Int. J. Ser. C Mech. Syst. Mach. Elem. Manuf. 41, 599–607 (1998)CrossRefGoogle Scholar
  39. 39.
    Ma, Y., Liu, H.P., Zhu, Y.P., et al.: The NARX model-based system identification on nonlinear, rotor-bearing systems. Appl. Sci. 7, 911 (2017)CrossRefGoogle Scholar
  40. 40.
    Hosseini, S.A.A., Khadem, S.E.: Vibration and reliability of a rotating beam with random properties under random excitation. Int. J. Mech. Sci. 49, 1377–1388 (2007)CrossRefGoogle Scholar
  41. 41.
    Luo, Z., Zhu, Y.P., Zhao, X.Y., et al.: Determining dynamic scaling laws of geometrically distorted scaled models of a cantilever plate. J. Eng. Mech. 4, 04015108 (2016)CrossRefGoogle Scholar
  42. 42.
    Hosseini, S.A.A., Khadem, S.E.: Free vibrations analysis of a rotating shaft with nonlinearities in curvature and inertia. Mech. Mach. Theory 44, 272–288 (2009)CrossRefzbMATHGoogle Scholar
  43. 43.
    Ghafarian, M., Ariaei, A.: Free vibration analysis of a multiple rotating nano-beams system based on the Eringen nonlocal elasticity theory. J. Appl. Phys. 120, 054301 (2016)CrossRefGoogle Scholar
  44. 44.
    Nayfeh, A.H., Pai, P.F.: Linear and Nonlinear Structural Mechanics. Wiley, New York (2004)CrossRefzbMATHGoogle Scholar
  45. 45.
    Dadfarnia, M., Jalili, N., Xian, B., et al.: A Lyapunov-based piezoelectric controller for flexible Cartesian robot manipulators. J. Dyn. Syst. Trans. ASME 126, 347–358 (2004)CrossRefGoogle Scholar
  46. 46.
    Mahmoodi, S.N., Afshari, M., Jahli, N.: Nonlinear vibrations of piezoelectric microcantilevers for biologically-induced surface stress sensing. Commun. Nonlinear Sci. 13, 1964–1977 (2008)CrossRefGoogle Scholar
  47. 47.
    Yang, J.S.: A review of analyses related to vibrations of rotating piezoelectric bodies and gyroscopes. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 698–706 (2005)CrossRefGoogle Scholar
  48. 48.
    Mojahedi, M., Ahmadian, M.T., Firoozbakhsh, K.: The influence of the intermolecular surface forces on the static deflection and pull-in instability of the micro/nano cantilever gyroscopes. Compos. Part B 56, 336–343 (2014)CrossRefzbMATHGoogle Scholar
  49. 49.
    Ma, H., Wang, D., Tai, X.Y., et al.: Vibration response analysis of blade-disk dovetail structure under blade tip rubbing condition. J. Vib. Control 23, 252–271 (2017)CrossRefGoogle Scholar
  50. 50.
    Sun, Q., Ma, H., Zhu, Y.P., et al.: Comparison of rubbing induced vibration responses using varying-thickness-twisted shell and solid-element blade models. Mech. Syst. Signal Process. 108, 1–20 (2018)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Wei Li
    • 1
  • Xiao-Dong Yang
    • 1
    Email author
  • Wei Zhang
    • 1
  • Yuan Ren
    • 2
  • Tian-Zhi Yang
    • 3
  1. 1.Beijing Key Laboratory of Non-linear Vibrations and Strength of Mechanical Engineering, College of Mechanical EngineeringBeijing University of TechnologyBeijingChina
  2. 2.Department of Aerospace Science and TechnologySpace Engineering UniversityBeijingChina
  3. 3.Department of MechanicsTianjin UniversityTianjinChina

Personalised recommendations