Acta Mechanica Sinica

, Volume 35, Issue 2, pp 338–342 | Cite as

Volumetric response of an ellipsoidal liquid inclusion: implications for cell mechanobiology

  • Xin Chen
  • Wei He
  • Shaobao Liu
  • Moxiao Li
  • Guy M. Genin
  • Feng XuEmail author
  • Tian Jian LuEmail author
Research Paper


Elastic composites containing liquid inclusions exist widely in nature and in engineered systems. The volumetric response of liquid inclusions is important in many cases, such as an isolated cell embedded in an extracellular matrix or an oil pocket embedded within shale. In this study, we developed a model for describing the volumetric response of an ellipsoidal liquid inclusion. Specifically, we investigated the volumetric response of an ellipsoidal liquid inclusion embedded in a three-dimensional (3D) matrix through an analytical expression of the volumetric response. We performed parametric analysis and found that loading along the shortest axis can induce the most volume change, while loading along the longest axis can induce the least volume change. We also found that the volumetric response decreases with increasing Poisson ratio of the matrix. These results could be used to understand some cell behavior in a 3D matrix, for example, cell alignment under mechanical load.


Liquid inclusion Liquid compressibility Inclusion theory Solid–liquid interaction 



This work was supported by the National Natural Science Foundation of China (Grants 11522219 and 11532009), the National Institutes of Health (Grant U01EB016422), and the National Science Foundation through the Science and Technology Center for Engineering Mechanobiology (Grant CMMI 1548571).


  1. 1.
    Giordano, S., Colombo, L.: Effects of the orientational distribution of cracks in solids. Phys. Rev. Lett. 98(5), 055503 (2007)CrossRefGoogle Scholar
  2. 2.
    Bartlett, M.D., Fassler, A., Kazem, N., et al.: Stretchable, high-k dielectric elastomers through liquid-metal inclusions. Adv. Mater. 28(19), 3726–3731 (2016)CrossRefGoogle Scholar
  3. 3.
    Owuor, P.S., Hiremath, S., Chipara, A.C., et al.: Nature inspired strategy to enhance mechanical properties via liquid reinforcement. Adv. Mater. Interfaces 4(16), 1700240 (2017)CrossRefGoogle Scholar
  4. 4.
    Miriyev, A., Stack, K., Lipson, H.: Soft material for soft actuators. Nat. Commun. 8(1), 596 (2017)CrossRefGoogle Scholar
  5. 5.
    Cairns, D.R., Genin, G.M., Wagoner, A.J., et al.: Amplified stain-rate dependence of deformation in polymer-dispersed liquid-crystal materials. Appl. Phys. Lett. 75(13), 1872–1874 (1999)CrossRefGoogle Scholar
  6. 6.
    Elson, E.L., Genin, G.M.: The role of mechanics in actin stress fiber kinetics. Exp. Cell Res. 319(16), 2490–2500 (2013)CrossRefGoogle Scholar
  7. 7.
    Guo, M., Pegoraro, A.F., Mao, A., et al.: Cell volume change through water efflux impacts cell stiffness and stem cell fate. Proc. Natl. Acad. Sci. USA 114(41), 201705179 (2017)Google Scholar
  8. 8.
    Chen, C., Krishnan, R., Zhou, E.H., et al.: Fluidization and resolidification of the human bladder smooth muscle cell in response to transient stretch. PLoS ONE 5(8), e12035 (2010)CrossRefGoogle Scholar
  9. 9.
    Krishnan, R., Park, C.Y., Lin, Y.C., et al.: Reinforcement versus fluidization in cytoskeletal mechanoresponsiveness. PLoS ONE 4(5), e5486 (2009)CrossRefGoogle Scholar
  10. 10.
    Lee, S.L., Nekouzadeh, A., Butler, B., et al.: Physically-induced cytoskeleton remodeling of cells in three-dimensional culture. PLoS ONE 7(12), e45512 (2012)CrossRefGoogle Scholar
  11. 11.
    De, R., Safran, S.A.: Dynamical theory of active cellular response to external stress. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 78, 031923 (2008)CrossRefGoogle Scholar
  12. 12.
    De, R., Zemel, A., Safran, S.A.: Dynamics of cell orientation. Nat. Phys. 3(9), 655–659 (2007)CrossRefGoogle Scholar
  13. 13.
    Mcgarry, J.P., Fu, J., Yang, M.T., et al.: Simulation of the contractile response of cells on an array of micro-posts. Philos. Trans. R. Soc. Lond. Math. Phys. Eng. Sci. 2009(367), 3477–3497 (1902)zbMATHGoogle Scholar
  14. 14.
    Hsu, H.J., Lee, C.F., Kaunas, R.: A dynamic stochastic model of frequency-dependent stress fiber alignment induced by cyclic stretch. PLoS ONE 4(3), e4853 (2009)CrossRefGoogle Scholar
  15. 15.
    Kaunas, R., Hsu, H.J.: A kinematic model of stretch-induced stress fiber turnover and reorientation. J. Theor. Biol. 257(2), 320–330 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Li, Y., Huang, G.Y., Li, M.X., et al.: An approach to quantifying 3D responses of cells to extreme strain. Sci. Rep. 6, 19550 (2016)CrossRefGoogle Scholar
  17. 17.
    Babaei, B., Davarian, A., Lee, S.L., et al.: Remodeling by fibroblasts alters the rate-dependent mechanical properties of collagen. Acta Biomater. 37, 28–37 (2016)CrossRefGoogle Scholar
  18. 18.
    Marquez, J.P., Genin, G.M.: Whole cell mechanics of contractile fibroblasts: relations between effective cellular and extracellular matrix moduli. Philos. Trans. 2010(368), 635–654 (1912)Google Scholar
  19. 19.
    Marquez, J.P., Genin, G.M., Zahalak, G.I., et al.: The relationship between cell and tissue strain in three-dimensional bio-artificial tissues. Biophys. J. 88(2), 778–789 (2005)CrossRefGoogle Scholar
  20. 20.
    Ducloué, L., Pitois, O., Goyon, J., et al.: Coupling of elasticity to capillarity in soft aerated materials. Soft Matter 10(28), 5093–5098 (2014)CrossRefGoogle Scholar
  21. 21.
    Mora, S., Pomeau, Y.: Softening of edges of solids by surface tension. J. Phys. Condens. Matter Inst. Phys. J. 27(19), 194112 (2015)CrossRefGoogle Scholar
  22. 22.
    Wang, Y., Henann, D.L.: Finite-element modeling of soft solids with liquid inclusions. Extreme Mech. Lett. 9, 147–157 (2016)CrossRefGoogle Scholar
  23. 23.
    Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 241(1226), 376–396 (1957)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Shafiro, B., Kachanov, M.: Materials with fluid-filled pores of various shapes: effective elastic properties and fluid pressure polarization. Int. J. Solids Struct. 34(27), 3517–3540 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Chen, X., Li, M.X., Yang, M., et al.: The elastic fields of a compressible liquid inclusion. Extreme Mech. Lett. 22, 122–130 (2018)CrossRefGoogle Scholar
  26. 26.
    Mancarella, F., Style, R.W., Wettlaufer, J.S.: Interfacial tension and a three-phase generalized self-consistent theory of non-dilute soft composite solids. Soft Matter 12(10), 2744–2750 (2016)CrossRefzbMATHGoogle Scholar
  27. 27.
    Style, R.W., Wettlaufer, J.S., Dufresne, E.R.: Surface tension and the mechanics of liquid inclusions in compliant solids. Soft Matter 11(4), 672–679 (2015)CrossRefGoogle Scholar
  28. 28.
    Eshelby, J.: The elastic field outside an ellipsoidal inclusion. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 252(1271), 561–569 (1959)MathSciNetzbMATHGoogle Scholar
  29. 29.
    David, E.C., Zimmerman, R.W.: Compressibility and shear compliance of spheroidal pores: exact derivation via the Eshelby tensor, and asymptotic expressions in limiting cases. Int. J. Solids Struct. 48(5), 680–686 (2011)CrossRefzbMATHGoogle Scholar
  30. 30.
    Gauvin, R., Parenteau-Bareil, R., Larouche, D., et al.: Dynamic mechanical stimulations induce anisotropy and improve the tensile properties of engineered tissues produced without exogenous scaffolding. Acta Biomater. 7(9), 3294–3301 (2011)CrossRefGoogle Scholar
  31. 31.
    Grenier, G., Remy-Zolghadri, M., Larouche, D., et al.: Tissue reorganization in response to mechanical load increases functionality. Tissue Eng. 11(2), 90–100 (2005)CrossRefGoogle Scholar
  32. 32.
    Kanda, K., Matsuda, T.: Mechanical stress-induced orientation and ultrastructural change of smooth muscle cells cultured in three-dimensional collagen lattices. Cell Transpl. 3(6), 481–492 (1994)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory for Strength and Vibration of Mechanical StructuresXi’an Jiaotong UniversityXi’anChina
  2. 2.Bioinspired Engineering and Biomechanics Center (BEBC)Xi’an Jiaotong UniversityXi’anChina
  3. 3.State Key Laboratory of Mechanics and Control of Mechanical StructuresNanjing University of Aeronautics and AstronauticsNanjingChina
  4. 4.Key Laboratory of Biomedical Information Engineering of Ministry of EducationXi’an Jiaotong UniversityXi’anChina
  5. 5.U.S. National Science Foundation Science and Technology Center for Engineering MechanobiologyWashington UniversitySt. LouisUSA
  6. 6.Nanjing Center for Multifunctional Lightweight Materials and Structures (MLMS)Nanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations