Skip to main content
Log in

Buckling of filamentous actin bundles in filopodial protrusions

  • RESEARCH PAPER
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The mechanical behavior of filamentous actin bundles plays an essential role in filopodial protrusions at the leading edge of crawling cells. These bundles consist of parallel actin filaments that are hexagonally packed and interconnected via cross-linking proteins including α-actinin, filamin, and fascin. When pushing against the plasma membrane and/or external barriers, actin bundles in filopodial protrusions inevitably encounter a compressive load. The bending stiffness and buckling stability of actin bundles are therefore important in determining the filopodial architecture and subsequent cell morphology. In this work, we employ a coarse-grained molecular dynamics model to investigate the buckling behavior of cross-linked actin bundles under compression, explicitly accounting for the properties of the constituent filaments and the mechanical description of the cross-linkers. The bending stiffness of actin bundles exhibits a generic size effect depending on the number of filaments in the bundle, explicitly depending on the degree of interfilament coupling. The distinct buckling modes are analyzed for bundles with different coupling states and crosslinker strengths. This study could clarify the stability and buckling mechanisms of parallel packed actin bundles and the structure–function relations of mechanical components in filopodial protrusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fletcher, D.A., Mullins, D.: Cell mechanics and the cytoskeleton. Nature 463, 485–492 (2010)

    Article  Google Scholar 

  2. Blanchoin, L., Boujemaa-Paterski, R., Sykes, C., et al.: Actin dynamics, architecture, and mechanics in cell motility. Physiol. Rev. 94, 235–263 (2014)

    Article  Google Scholar 

  3. Bray, D., White, J.G.: Cortical flow in animal cells. Science 239, 883–888 (1988)

    Article  Google Scholar 

  4. Chugh, P., Paluch, E.K.: The actin cortex at a glance. J. Cell Sci. 131, 186254 (2018)

    Article  Google Scholar 

  5. Tojkander, S., Gateva, G., Lappalainen, P.: Actin stress fibers-assembly, dynamics and biological roles. J. Cell Sci. 125, 1855–1864 (2012)

    Article  Google Scholar 

  6. Small, J.V., Stradal, T., Vignal, E., et al.: The lamellipodium: where motility begins. Trends Cell Biol. 12, 112–120 (2002)

    Article  Google Scholar 

  7. Gong, B., Lin, J., Qian, J.: Growing actin networks regulated by obstacle size and shape. Acta Mech. Sin. 33, 222–233 (2017)

    Article  MATH  Google Scholar 

  8. Mattila, P.K., Lappalainen, P.: Filopodia: molecular architecture and cellular functions. Nat. Rev. Mol. Cell Biol. 9, 446–454 (2008)

    Article  Google Scholar 

  9. Huang, F.K., Han, S.Q., Xing, B.W., et al.: Targeted inhibition of fascin function blocks tumour invasion and metastatic colonization. Nat. Commun. 6, 7465 (2015)

    Article  Google Scholar 

  10. Han, S.Q., Huang, J.Y., Liu, B.Q., et al.: Improving fascin inhibitors to block tumor cell migration and metastasis. Mol. Oncol. 10, 966–980 (2016)

    Article  Google Scholar 

  11. Vignjevic, D., Kojima, S., Svitkina, T., et al.: Role of fascin in filopodial protrusion. J. Cell Biol. 174, 863–875 (2006)

    Article  Google Scholar 

  12. Van Audenhove, I., Denert, M., Boucherie, C., et al.: Fascin rigidity and L-plastin flexibility cooperate in cancer cell invadopodia and filopodia. J. Biol. Chem. 291, 9148–9160 (2016)

    Article  Google Scholar 

  13. Mogilner, A., Rubinstein, B.: The physics of filopodial protrusion. Biophys. J. 89, 782–795 (2005)

    Article  Google Scholar 

  14. Jasnin, M., Asano, S., Gouin, E., et al.: Three-dimensional architecture of actin filaments in Listeria monocytogenes comet tails. Proc. Natl. Acad. Sci. USA 110, 20521–20526 (2013)

    Article  Google Scholar 

  15. Dobramysl, U., Papoian, G.A., Erban, R.: Steric effects induce geometric remodeling of actin bundles in filopodia. Biophys. J. 110, 2066–2075 (2016)

    Article  Google Scholar 

  16. Kim, T., Hwang, W., Kamm, R.D.: Computational analysis of a cross-linked actin-like network. Exp. Mech. 49, 91–104 (2009)

    Article  Google Scholar 

  17. Kojima, H., Ishijima, A., Yanagida, T.: Direct measurement of stiffness of single actin-filaments with and without tropomyosin by in vitro nanomanipulation. Proc. Natl. Acad. Sci. USA 91, 12962–12966 (1994)

    Article  Google Scholar 

  18. Le Goff, L., Hallatschek, O., Frey, E., et al.: Tracer studies on F-actin fluctuations. Phys. Rev. Lett. 89, 258101 (2002)

    Article  Google Scholar 

  19. Schwaiger, I., Kardinal, A., Schleicher, M., et al.: A mechanical unfolding intermediate in an actin-crosslinking protein. Nat. Struct. Mol. Biol. 11, 81–85 (2004)

    Article  Google Scholar 

  20. Bathe, M., Heussinger, C., Claessens, M.M.A.E., et al.: Cytoskeletal bundle mechanics. Biophys. J. 94, 2955–2964 (2008)

    Article  Google Scholar 

  21. Claessens, M.M.A.E., Bathe, M., Frey, E., et al.: Actin-binding proteins sensitively mediate F-actin bundle stiffness. Nat. Mater. 5, 748–753 (2006)

    Article  Google Scholar 

  22. Li, T., Oloyede, A., Gu, Y.T.: F-actin crosslinker: a key player for the mechanical stability of filopodial protrusion. J. Appl. Phys. 114, 214701 (2013)

    Article  Google Scholar 

  23. Wei, X., Zhu, Q., Qian, J., et al.: Response of biopolymer networks governed by the physical properties of cross-linking molecules. Soft Matter 12, 2537–2541 (2016)

    Article  Google Scholar 

  24. Zhao, Z.L., Zhao, H.P., Chang, Z., et al.: Analysis of bending and buckling of pre-twisted beams: a bioinspired study. Acta Mech. Sin. 30, 507–515 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, J.P., Zhong, X.Y., Cheng, Z.B., et al.: Buckling of a slender rod confined in a circular tube: theory, simulation, and experiment. Int. J. Mech. Sci. 140, 288–305 (2018)

    Article  Google Scholar 

  26. Leijnse, N., Oddershede, L.B., Bendix, P.M.: Helical buckling of actin inside filopodia generates traction. Proc. Natl. Acad. Sci. USA 112, 136–141 (2015)

    Article  Google Scholar 

  27. Tsai, F., Koenderink, G.H.: Shape control of lipid bilayer membranes by confined actin bundles. Soft Matter 11, 8834–8847 (2015)

    Article  Google Scholar 

  28. Li, J., Biel, T., Lomada, P., et al.: Buckling-induced F-actin fragmentation modulates the contraction of active cytoskeletal networks. Soft Matter 13, 3213–3220 (2017)

    Article  Google Scholar 

  29. Aratyn, Y.S., Schaus, T.E., Taylor, E.W., et al.: Intrinsic dynamic behavior of fascin in filopodia. Mol. Biol. Cell 18, 3928–3940 (2007)

    Article  Google Scholar 

  30. Weeks, J.D., Chandler, D., Andersen, H.C.: Role of repulsive forces in determining equilibrium structure of simple liquids. J. Chem. Phys. 54, 5237–5247 (1971)

    Article  Google Scholar 

  31. Zhou, X.L., Jiang, Y.W., Deng, Z.Y., et al.: Glassy dynamics of nanoparticles in semiflexible ring polymer nanocomposite melts. Sci. Rep. 7, 44325 (2017)

    Article  Google Scholar 

  32. Claessens, M.M.A.E., Semmrich, C., Ramos, L., et al.: Helical twist controls the thickness of F-actin bundles. Proc. Natl. Acad. Sci. USA 105, 8819–8822 (2008)

    Article  Google Scholar 

  33. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)

    Article  MATH  Google Scholar 

  34. Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants 11672268, 11621062, and 91748209), the Zhejiang Provincial Natural Science Foundation of China (Grant LR16A020001), and the Fundamental Research Funds for Central Universities of China (Grant 2017FZA4029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Qian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Qian, J. Buckling of filamentous actin bundles in filopodial protrusions. Acta Mech. Sin. 35, 365–375 (2019). https://doi.org/10.1007/s10409-019-00838-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-019-00838-1

Keywords

Navigation