Acta Mechanica Sinica

, Volume 35, Issue 4, pp 763–772 | Cite as

Dynamic experimental studies of A6N01S-T5 aluminum alloy material and structure for high-speed trains

  • Zishang Liu
  • Yangyang Yu
  • Zhe Yang
  • Yanpeng WeiEmail author
  • Junshuang Cai
  • Maohui Li
  • Chenguang Huang
Research Paper


In this study, we focus on the dynamic failure property of A6N01S-T5 aluminum alloy use for high-speed trains. The method of split Hopkinson tensile bar (SHTB) and three-dimensional (3D) digital image correlation (DIC) was put forward to find the dynamic mechanical properties and dynamic failure strain of A6N01S-T5 aluminum alloy, and on the basis of this, Johnson–Cook model constitutive parameters and dynamic failure strain parameters were obtained through a series of static and dynamic tests. An important character of this method was that the sandwich structure from the true high-speed train was used in penetration test, followed by the numerical calculation of the same working condition using LS-DYNA. Then we compare the experimental results with simulation results mentioned above in terms of failure morphology in structure and the bullet speed throughout the entire process to verify the accuracy of the parameter. The experimental results provide a data basis for the crash simulation model of high-speed trains, in turn to optimize the structural design and whole efficiency.

Graphical abstract


A6N01S-T5 aluminum alloy Dynamic failure strain Constitutive model Dynamic mechanical properties 



This work was supported by the National Department of Science and Technology (Grant 2016YFB1200505).


  1. 1.
    Chen, H.G., Administration, J.R.: Performance of the a6n01s-t5 aluminum alloy and the welding joint for high speed train at low temperature. Electr. Weld. Mach. 46, 77–82 (2016) (in Chinese)Google Scholar
  2. 2.
    Gou, G.Q., Huang, N., Chen, H., et al.: Research on corrosion behavior of A6N01S-T5 aluminum alloy welded joint for high-speed trains. J. Mech. Sci. Technol. 26, 1471–1476 (2012)CrossRefGoogle Scholar
  3. 3.
    Yonetani, H.: Laser-mig hybrid welding to aluminium alloy carbody shell for railway vehicles. Weld. Int. 22, 701–704 (2008)CrossRefGoogle Scholar
  4. 4.
    Yu, J., Gou, G., Zhang, L., et al.: Ultrasonic impact treatment to improve stress corrosion cracking resistance of welded joints of aluminum alloy. J. Mater. Eng. Perform. 25, 3046–3056 (2016)CrossRefGoogle Scholar
  5. 5.
    Zhu, Z.Y., Chen, P., Zhou, H.M., et al.: Effect of the welding heat input on residual stresses in butt-weld of high-speed train. In: International Conference on Materials and Products Manufacturing Technology, Chengdu, October 28–30 (2011)Google Scholar
  6. 6.
    Dorn, J.E., Pietrokowsky, P., Tietz, T.E.: The effect of alloying elements on the plastic properties of aluminum alloys. JOM 2, 933–943 (1950)CrossRefGoogle Scholar
  7. 7.
    Mrówka-Nowotnik, G.: Influence of chemical composition variation and heat treatment on microstructure and mechanical properties of 6xxx alloys. Arch. Metall. Mater. 46, 98–107 (2010)Google Scholar
  8. 8.
    Liu, Y.L., Kang, S.B., Kim, H.W.: The complex microstructures in an as-cast Al–Mg–Si alloy. Mater. Lett. 41, 267–272 (1999)CrossRefGoogle Scholar
  9. 9.
    Irving, B.: Welding the four most popular aluminum alloys. Weld. J. 73(2), 51–55 (1994)Google Scholar
  10. 10.
    Bergsma, S.C.: Aluminum-magnesium-silicon alloy and treatment schedule, for use in the transport industry. US Patent 5961752-A (1999)Google Scholar
  11. 11.
    Troeger, L.P., Starke, E.A.: Microstructural and mechanical characterization of a superplastic 6xxx aluminum alloy. Mater. Sci. Eng. 277, 102–113 (2000)CrossRefGoogle Scholar
  12. 12.
    Ito, T., Ishikawa, M., Otsuka, M., et al.: Ductility of 6xxx aluminum alloys at high temperature. J. Jpn. Inst. Ligh. Met. 53, 114–120 (2003)CrossRefGoogle Scholar
  13. 13.
    Schulz, P., Berneder, J., Uffelmann, D., et al.: Advanced 5xxx-, 6xxx- and 7xxx-aluminium alloys for applications in automotive and consumer electronics. Mater. Sci. Forum 690, 451–454 (2011)CrossRefGoogle Scholar
  14. 14.
    Zhong, H., Rometsch, P.A., Cao, L.F., et al.: The influence of Mg/Si ratio and Cu content on the stretch formability of 6xxx aluminium alloys. Mater. Sci. Eng. 651, 688–697 (2016)CrossRefGoogle Scholar
  15. 15.
    Koo, J.S., Cho, H.J.: Theoretical method for predicting the weight reduction rate of a box-type car body for rolling stock by material substitution design. Int. J. Automot. Technol. 10, 355–363 (2009)CrossRefGoogle Scholar
  16. 16.
    Kang, S.G., Shin, K.B., Ko, T.H., et al.: Lightweight design of car bodies for double deck high-speed trains. J. Korean Soc. Manuf. Technol. Eng. 24, 177–185 (2015) (in Korean)Google Scholar
  17. 17.
    Gao, Y.H., Shi, X.F., Xie, S.M., et al.: Sensitivity analysis and lightweight design for high-speed train car body. J. Rail Way Sci. Eng. 14, 885–891 (2017) (in Chinese)Google Scholar
  18. 18.
    Rochard, B.P., Schmid, F.: Benefits of lower-mass trains for high speed rail operations. Proc. Inst. Civil Eng. Transp. 157, 51–64 (2004)Google Scholar
  19. 19.
    Wennberg, D., Stichel, S., Wennhage, P.: Benefits of weight reduction in high-speed train operations. ZEV Rail Glasers Annalen 137, 77–87 (2013)Google Scholar
  20. 20.
    Ezra, A.A., Fay, R.J.: An assessment of energy absorbing devices for prospective use in aircraft impact situations. in: Dynamic behaviour of structures, pp. 225–246. Pergamon, London (1972)Google Scholar
  21. 21.
    Yang, Z., Yu, Y.Y., Wei, Y.P., et al.: Crushing behavior of a thin-walled circular tube with internal gradient grooves fabricated by SLM 3D printing. Thin Walled Struct. 111, 1–8 (2017)CrossRefGoogle Scholar
  22. 22.
    Li, Z.G., Yang, H.F., Hu, X.W., et al.: Experimental study on the crush behavior and energy-absorption ability of circular magnesium thin-walled tubes and the comparison with aluminum tubes. Eng. Struct. 164, 1–13 (2018)CrossRefGoogle Scholar
  23. 23.
    Spigarelli, S., Evangelista, E., Mcqueen, H.J.: Study of hot workability of a heat treated AA6082 aluminum alloy. Scr. Mater. 49, 179–183 (2003)CrossRefGoogle Scholar
  24. 24.
    Garrett, R.P., Lin, J., Dean, T.A.: An investigation of the effects of solution heat treatment on mechanical properties for aa 6xxx alloys: experimentation and modelling. Int. J. Plast 21, 1640–1657 (2005)CrossRefzbMATHGoogle Scholar
  25. 25.
    Werber, A., Liewald, M.: Influence of pre-strain and heat treatment on mechanical properties of aluminum sheet. Int. J. Mater. Form. 5, 307–315 (2012)CrossRefGoogle Scholar
  26. 26.
    Zhong, H., Rometsch, P., Estrin, Y.: Effect of alloy composition and heat treatment on mechanical performance of 6xxx aluminum alloys. Trans. Nonferrous Met. Soc. China 24, 2174–2178 (2014)CrossRefGoogle Scholar
  27. 27.
    Shi, L., Yang, H., Guo, L.G., et al.: Constitutive modeling of deformation in high temperature of a forging 6005A aluminum alloy. Mater. Des. 54, 576–581 (2014)CrossRefGoogle Scholar
  28. 28.
    Zhu, D.J., Mobasher, B., Rajan, S.D., et al.: Characterization of dynamic tensile testing using aluminum alloy 6061-T6 at intermediate strain rates. J. Eng. Mech. 137, 669–679 (2011)CrossRefGoogle Scholar
  29. 29.
    Vilamosa, V., Clausen, A.H., Børvik, T., et al.: Behaviour of Al–Mg–Si alloys at a wide range of temperatures and strain rates. Int. J. Impact Eng. 86, 223–239 (2015)CrossRefGoogle Scholar
  30. 30.
    Zhang, D.N., Shangguan, Q.Q., Xie, C.J., et al.: A modified Johnson–Cook model of dynamic tensile behaviors for 7075–T6 aluminum alloy. J. Alloy. Compd. 619, 186–194 (2015)CrossRefGoogle Scholar
  31. 31.
    Singh, R., Chauhan, S., Gope, P.C.: Fracture behavior of welded aluminum alloy at high strain rates. Proc. Eng. 173, 1246–1250 (2017)CrossRefGoogle Scholar
  32. 32.
    Chen, X.Z., Peng, Y., Peng, S., et al.: Flow and fracture behavior of aluminum alloy 6082-T6 at different tensile strain rates and triaxialities. PLoS ONE 12, e0181983 (2017)CrossRefGoogle Scholar
  33. 33.
    Sun, D.Z., Krawiec, M., Hooputra, H.: Characterization and modelling of the damage behavior of extruded aluminum profiles for crash simulations. Mater. Sci. Forum 877, 674–679 (2016)CrossRefGoogle Scholar
  34. 34.
    Børvik, T., Hopperstad, O.S., Berstad, T.: On the influence of stress triaxiality and strain rate on the behaviour of a structural steel. Part II. Numerical study. Eur. J. Mech. A Solids 22, 15–32 (2003)CrossRefzbMATHGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zishang Liu
    • 1
    • 2
  • Yangyang Yu
    • 3
  • Zhe Yang
    • 2
  • Yanpeng Wei
    • 2
    Email author
  • Junshuang Cai
    • 3
  • Maohui Li
    • 4
  • Chenguang Huang
    • 2
  1. 1.Institute of MechanicsChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.CRRC Qingdao Sifang CO., LTDQingdaoChina
  4. 4.Quartermaster Research Institute of Engineering and TechnologyBeijingChina

Personalised recommendations