Skip to main content
Log in

A numerical study for WENO scheme-based on different lattice Boltzmann flux solver for compressible flows

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In this paper, the finite difference weighted essentially non-oscillatory (WENO) scheme is incorporated into the recently developed four kinds of lattice Boltzmann flux solver (LBFS) to simulate compressible flows, including inviscid LBFS I, viscous LBFS II, hybrid LBFS III and hybrid LBFS IV. Hybrid LBFS can automatically realize the switch between inviscid LBFS I and viscous LBFS II through introducing a switch function. The resultant hybrid WENO–LBFS scheme absorbs the advantages of WENO scheme and hybrid LBFS. We investigate the performance of WENO scheme based on four kinds of LBFS systematically. Numerical results indicate that the devopled hybrid WENO–LBFS scheme has high accuracy, high resolution and no oscillations. It can not only accurately calculate smooth solutions, but also can effectively capture contact discontinuities and strong shock waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Harten, A., Osher, S.: Uniformly high-order accurate non-oscillatory schemes. I. SIAM. J. Numer. Anal. 24(2), 279–309 (1987)

    Article  MathSciNet  Google Scholar 

  2. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)

    Article  MathSciNet  Google Scholar 

  3. Liu, X.D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115(1), 200–212 (1994)

    Article  MathSciNet  Google Scholar 

  4. Jiang, G.S., Shu, C.W.: Efficient implementation of weighted eno schemes. J. Comput. Phys. 126(1), 202–228 (1996)

    Article  MathSciNet  Google Scholar 

  5. Shu, C.W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. ICASE Report No. 97-65 (1997)

  6. Balsara, D.S., Shu, C.W.: Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 160(2), 405–452 (2000)

    Article  MathSciNet  Google Scholar 

  7. Friedrich, O.: Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids. J. Comput. Phys. 144(1), 194–212 (1998)

    Article  MathSciNet  Google Scholar 

  8. Shi, J., Hu, C., Shu, C.W.: A technique of treating negative weights in weno schemes. J. Comput. Phys. 175(1), 108–127 (2002)

    Article  Google Scholar 

  9. Borges, R., Carmona, M., Costa, B.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227(6), 3191–3211 (2008)

    Article  MathSciNet  Google Scholar 

  10. Fan, P., Shen, Y.Q., Tian, B.L., et al.: A new smoothness indicator for improving the weighted essentially non-oscillatory scheme. J. Comput. Phys. 269(1), 329–354 (2014)

    Article  MathSciNet  Google Scholar 

  11. Hu, X.Y., Wang, B., Adams, N.A.: An efficient low-dissipation hybrid weighted essentially non-oscillatory scheme. J. Comput. Phys. 301, 415–424 (2015)

    Article  MathSciNet  Google Scholar 

  12. Shahbazi, K.: High-order hybrid fourier continuation-weno scheme for 3D compressible Navier–Stokes equations. In: 46th AIAA Fluid Dynamics Conference, Washington (2016)

  13. Buhmann, M.D.: Radial Basis Functions: Theory and Implementations. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  14. Funaro, D.: Polynamial Approximation of Differential Equations. Springer, Berlin (1992)

    MATH  Google Scholar 

  15. Harten, A., Lax, P.D., van Leer, B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM. Rev. 25(1), 35–61 (1983)

    Article  MathSciNet  Google Scholar 

  16. Toro, E.F., Spruce, M., Speares, W.: Restoration of the contact surface in the Harten-Lax-van Leer riemann solve. Shock Waves 4(1), 25–34 (1994)

    Article  Google Scholar 

  17. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, Berlin (2009)

    Book  Google Scholar 

  18. Titarev, V.A., Toro, E.F.: Finite-volume weno schemes for three-dimensional conservation laws. J. Comput. Phys. 201(1), 238–260 (2004)

    Article  MathSciNet  Google Scholar 

  19. Xu, K.: A gas-kinetic bgk scheme for the navier-stock equations and its connection with artificial dissipation and godunov method. J. Comput. Phys. 171, 289–335 (2001)

    Article  MathSciNet  Google Scholar 

  20. Yang, L.M., Shu, C., Wu, J.: A simple distribution function-based gas-kinetic scheme for simulation of viscous incompressible and compressible flows. J. Comput. Phys. 274, 611–632 (2014)

    Article  MathSciNet  Google Scholar 

  21. Sun, Y., Shu, C., Teo, C.J., et al.: Explicit formulations of gas-kinetic flux solver for simulation of incompressible and compressible viscous flows. J. Comput. Phys. 300, 492–519 (2015)

    Article  MathSciNet  Google Scholar 

  22. Sun, Y., Shu, C., Yang, L.M., et al.: A switch function-based gas-kinetic scheme for simulation of inviscid and viscous compressible flows. Adv. Appl. Math. Mech. 8(5), 703–721 (2016)

    Article  MathSciNet  Google Scholar 

  23. Pan, L., Li, J.Q., Xu, K.: A few benchmark test cases for higher-order euler solvers. Numer. Math. Theory Methods 10(4), 711–736 (2017)

    Article  MathSciNet  Google Scholar 

  24. Chou, S.Y., Baganoff, D.: Kinetic flux-vector splitting for the Navier–Stock equations. J. Comput. Phys. 130(2), 217–230 (1997)

    Article  Google Scholar 

  25. Xu, K.: Gas-kinetic schemes for unsteady compressible flow simulations. In: Lecture series: van Kareman Institute for fluid dynamics A vol. 3, pp. C1–C202 (1998)

  26. He, X., Li, N.: Lattice Boltzmann simulation of electrochemical systems. Comput. Phys. Commun. 129(1), 158–166 (2000)

    Article  MathSciNet  Google Scholar 

  27. Niu, X.D., Shu, C., Chew, Y.T.: A thermal lattice Boltzmann model with diffuse scattering boundary condition for micro thermal flows. Comput. Fluids 36(2), 273–281 (2007)

    Article  Google Scholar 

  28. Yuan, H.Z., Niu, X.D., Shu, S., et al.: A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating a flexible filament in an incompressible flow. Comput. Math. Appl. 67(5), 1039–1056 (2014)

    Article  MathSciNet  Google Scholar 

  29. Wang, Y., Shu, C., Yang, L.M., et al.: A decoupling multiple-relaxation-time lattice Boltzmann flux solver for non-newtonian power-law fluid flows. J. Non-Newton. Fluid 235, 20–28 (2016)

    Article  MathSciNet  Google Scholar 

  30. Li, Q., Luo, K.H., Kang, Q.J., et al.: Lattice boltzmann methods for multiphase flow and phase-change heat transfer. Prog. Energy Combust. Sci. 52, 62–105 (2016)

    Article  Google Scholar 

  31. Xu, A., Shyy, W., Zhao, T.S.: Lattice Boltzmann modeling of transport phenomena in fuel cell and flow batteries. Acta Mech. Sin. 33(3), 555–574 (2017)

    Article  MathSciNet  Google Scholar 

  32. Ji, C.Z., Shu, C., Zhao, N.: A lattice Boltzmann method-based flux solver and its application to solve shock tube problem. Mod. Phys. Lett. B. 23(3), 313–316 (2009)

    Article  Google Scholar 

  33. Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43(2), 357–372 (1981)

    Article  MathSciNet  Google Scholar 

  34. Steger, J.L., Warming, R.F.: Flux vector splitting of the inviscid gas dynamic equations with application to finite-difference methods. J. Comput. Phys. 40(2), 263–293 (1981)

    Article  MathSciNet  Google Scholar 

  35. Shu, C.W.: High order weighted essentially non-oscillatory schemes for convection dominated problem. SIAM. Rev. 51(1), 82–126 (2009)

    Article  MathSciNet  Google Scholar 

  36. Qu, K., Shu, C., Chew, Y.T.: Alternative method to construct equilibrium distribution functions in lattice-Blotzmann method simulation of inviscid compressible flows at high mach number. Phys. Rev. E 75(3), 036706 (2007)

    Article  MathSciNet  Google Scholar 

  37. Qu, K., Shu, C., Chew, Y.T.: Simulation of shock-wave propagation with finite volume lattice Boltzmann method. Int. J. Mod. Phys. C 18(4), 447–454 (2007)

    Article  MathSciNet  Google Scholar 

  38. Yang, L.M., Shu, C., Wu, J.: A moment conservation-based non-free parameter compressible lattice Boltzmann model and its application for flux evaluation at cell interface. Comput. Fluids 79(6), 190–199 (2013)

    Article  MathSciNet  Google Scholar 

  39. Shu, C., Wang, Y., Yang, L.M., et al.: Lattice Boltzmann flux solver: an efficient approach for numerical simulation of fluid flows. Trans. Nanjing Univ. Aeronaut. Astronaut. 31(1), 1–15 (2014)

    Google Scholar 

  40. Shu, C., Wang, Y., Teo, C.J., et al.: Development of lattice boltzmann flux solver for simulation of incompressible flows. Adv. Appl. Math. Mech. 6(4), 436–460 (2014)

    Article  MathSciNet  Google Scholar 

  41. Wang, Y., Shu, C., Teo, C.J., et al.: An efficient immersed boundary-lattice Boltzmann flux solver for simulation of 3D incompressible flows with complex geometry. Comput. Fluids 124, 54–66 (2015)

    Article  MathSciNet  Google Scholar 

  42. Wang, Y., Shu, C., Huang, H.B., et al.: Multiphase lattice Boltzmann flux solver for incompressible multiphase flows with large density ratio. J. Comput. Phys. 280, 404–423 (2015)

    Article  MathSciNet  Google Scholar 

  43. Wang, Y., Yang, L.M., Shu, C.: From lattice Boltzmann method to lattice Boltzmann flux solver. Entropy 17(11), 7713–7735 (2015)

    Article  Google Scholar 

  44. Yang, L.M., Shu, C., Wu, J.: A hybrid lattice Boltzmann flux solver for simulation of viscous compressible flows. Adv. Appl. Math. Mech. 8(6), 887–910 (2016)

    Article  MathSciNet  Google Scholar 

  45. Benzi, R., Succi, S., Vergassola, M.: The lattice Boltzmann equation: theory and application. Phys. Rep. 222(3), 145–197 (1992)

    Article  Google Scholar 

  46. Guo, Z.L., Shu, C.: Lattice Boltzmann Method and Its Applications in Engineering. World Scientific, Singapore (2013)

    Book  Google Scholar 

  47. Yang, L.M., Shu, C., Wu, J.: A hybrid lattice Boltzmann flux solver for simulation of 3D compressible viscous flows. In: Eighth International Conference on Computational Fluid Dynamics, Chengdu, China, 14–18 July (2014)

  48. Li, Y., Yuan, H.Z., Niu, X.D., et al.: Weno scheme-based lattice Boltzmann flux solver for simulation of compressible flows. Commun. Comput. Phys. 23(4), 1012–1036 (2018)

    Google Scholar 

  49. Yang, L.M., Shu, C., Wu, J.: Development and comparative studies of three non-free parameter lattice Boltzmann models for simulation of compressible flows. Adv. Appl. Math. Mech. 4(4), 454–472 (2012)

    Article  MathSciNet  Google Scholar 

  50. Xu, X., He, X.Y.: Lattice Boltzmann method and gas-kinetic BGK scheme in the low-mach number viscous flow simulations. J. Comput. Phys. 190, 100–117 (2003)

    Article  MathSciNet  Google Scholar 

  51. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54(1), 115–173 (1984)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grants 11372168, 11772179).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Dong Niu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Niu, XD., Yuan, HZ. et al. A numerical study for WENO scheme-based on different lattice Boltzmann flux solver for compressible flows. Acta Mech. Sin. 34, 995–1014 (2018). https://doi.org/10.1007/s10409-018-0785-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-018-0785-9

Keywords

Navigation