Skip to main content
Log in

An inverse problem in film/substrate indentation: extracting both the Young’s modulus and thickness of films

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In an indentation test, the effective Young’s modulus of a film/substrate bilayer heterostructure varies with the indentation depth, a phenomenon known as the substrate effect. In previous studies investigating this, only the Young’s modulus of the film was unknown. Once the effective Young’s modulus of a film/substrate structure is determined at a given contact depth, the Young’s modulus of the film can be uniquely determined, i.e., there is a one-to-one relation between the Young’s modulus of the film and the film/substrate effective Young’s modulus. However, at times it is extremely challenging or even impossible to measure the film thickness. Furthermore, the precise definition of the layer/film thickness for a two-dimensional material can be problematic. In the current study, therefore, the thickness of the film and its Young’s modulus are treated as two unknowns that must be determined. Unlike the case with one unknown, there are infinite combinations of film thickness and Young’s modulus which can yield the same effective Young’s modulus for the film/substrate. An inverse problem is formulated and solved to extract the Young’s modulus and thickness of the film from the indentation depth-load curve. The accuracy and robustness of the inverse problem-solving method are also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Britnell, L., Ribeiro, R.M., Eckamm, A., et al.: Strong light-matter interactions in heterostructure of atomically thin film. Science 340, 1311–1314 (2013)

    Article  Google Scholar 

  2. Bonaccorso, F., Colombo, L., Yu, G., et al.: Graphene, related two dimensional crystals, and hybrid systems for energy conversion and storage. Science 347, 1246501 (2015)

    Article  Google Scholar 

  3. Jiang, J.: Graphene versus MoS\(_2\): a short review. Front. Phys. 10, 106801 (2015)

    Article  Google Scholar 

  4. Liu, X., Galfsky, T., Sun, A., et al.: Strong light-matter coupling in two dimensional atomic crystals. Nat. Photon. 9, 30–34 (2015)

    Article  Google Scholar 

  5. Hong, X., Kim, J., Shi, S., et al.: Ultrafast charge transfer in atomically thin MoS\(_2\)/WS\(_2\) heterostructure. Nat. Nanotechnol. 9, 682–686 (2014)

    Article  Google Scholar 

  6. Come, J., Xie, Y., Naguib, M., et al.: Nanoscale elastic changes in 2D Ti\(_3\)C\(_2\)T\(_x\) (MXene) pseudocapacitive electrode. Adv. Energy Mater. 6, 1502290 (2016)

    Article  Google Scholar 

  7. Gao, Y., Kim, S., Zhou, S., et al.: Elastic coupling between layers in two-dimensional materials. Nat. Mater. 14, 714–720 (2015)

    Article  Google Scholar 

  8. Zhu, Y., Xu, F., Qin, Q., et al.: Mechanical properties of vapor–liquid–solid synthesized silicon nanowires. Nano Lett. 9, 3934–3939 (2009)

    Article  Google Scholar 

  9. Lee, C., Wei, X., Kyser, J.W., et al.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)

    Article  Google Scholar 

  10. Koenig, S.P., Boddeti, N.G., Dunn, M.L., et al.: Ultrastrong adhesion of graphene membranes. Nat. Nanotechnol. 6, 543–546 (2011)

    Article  Google Scholar 

  11. Zhang, Y.: Large deflection of clamped circular plate and accuracy of its approximate analytical solutions. Sci. China Phys. Mech. Astron. 59, 624602 (2016)

    Article  Google Scholar 

  12. Zhang, Y., Liu, Y.: The Mexican hat effect on the delamination buckling of a compressed thin film. Acta Mech. Sin. 30, 927–932 (2014)

    Article  MathSciNet  Google Scholar 

  13. Zhang, J., Yuan, B., Cheng, P., et al.: Exceptionally stiff two-dimensional molecular crystal by substrate-confinement. ACS Nano 11, 11425–11431 (2014)

    Article  Google Scholar 

  14. Saha, R., Nix, W.D.: Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater. 50, 23–38 (2002)

    Article  Google Scholar 

  15. Lim, Y.Y., Chaudhri, M.M., Enomoto, Y.: Accurate determination of the mechanical properties of thin aluminum films deposited on sapphire flats using nanoindentation. J. Mater. Res. 14, 2314–2327 (1999)

    Article  Google Scholar 

  16. Li, H., Vlassak, J.J.: Determining the elastic modulus and hardness of an ultra-thin film on a substrate using nanoindentation. J. Mater. Res. 24, 1114–1125 (2009)

    Article  Google Scholar 

  17. Reed, J.L., Dean, J., Aldrich-Smith, G., et al.: A methodology for obtaining plasticity characteristics of metallic coatings via instrumented indentation. Int. J. Solids Struct. 80, 128–136 (2016)

    Article  Google Scholar 

  18. Bull, S.J.: Nanoindentation of coatings. J. Phys. D Appl. Phys. 38, R293–R413 (2005)

    Article  Google Scholar 

  19. Menčik, J., Munz, D., Quandt, E., et al.: Determination of elastic modulus of thin layers using nanoindentation. J. Mater. Res. 12, 2475–2484 (1997)

    Article  Google Scholar 

  20. Dimitriadis, E.K., Horkay, F., Maresca, J., et al.: Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys. J. 82, 2798–2810 (2002)

    Article  Google Scholar 

  21. Tetard, L., Passian, A., Farahi, R.H., et al.: Spectroscopy and atomic force microscopy of biomass. Ultramicroscopy 110, 701–707 (2010)

    Article  Google Scholar 

  22. Elder, R.M., Neupane, M.R., Chantawansri, T.: Stacking order dependent mechanical properties of graphene/MoS\(_2\) bilayer and trilayer heterostructure. Appl. Phys. Lett. 107, 073101 (2015)

    Article  Google Scholar 

  23. Zhang, J., Cheng, P., Yuan, B., et al.: Real-space identification of intermolecular bonding with atomic force microscopy. Science 342, 611–614 (2013)

    Article  Google Scholar 

  24. Greenwood, J.A., Barber, J.R.: Indentation of an elastic layer by a rigid cylinder. Int. J. Solids Struct. 49, 2962–2977 (2012)

    Article  Google Scholar 

  25. Needleman, A., Tvergaard, V., van der Giessen, E.: Indentation of elastically soft and plastically compressible solids. Acta Mech. Sin. 31, 473–480 (2015)

    Article  MathSciNet  Google Scholar 

  26. Hertz, H.: Über die Berührung fester elasticscher Körper (On the contact of elastic solids). J. rein und angwandte mathematik 92, 156–171 (1882). (For English translation see Miscellaneous Papers by H. Hertz, Eds. Jones and Schott, Macmillan, London, UK, 1896)

  27. Derjaguin, B.V., Muller, V.M., Toporov, Y.P.: Effect of contact deformation on the adhesion of particles. J. Colloid Interface Sci. 53, 314–326 (1975)

    Article  Google Scholar 

  28. Zhang, Y.: Transitions between different contact models. J. Adhes. Sci. Technol. 22, 699–715 (2008)

    Google Scholar 

  29. Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A 324, 301–313 (1971)

    Article  Google Scholar 

  30. Zhang, Y.: Adhesion map of spheres: effects of curved contact interface and surface interaction outside contact region. J. Adhes. Sci. Technol. 25, 1435–1464 (2011)

    Article  Google Scholar 

  31. Tabor, D.: Surface force and surface interactions. J. Colloid Interface Sci. 58, 2–13 (1977)

    Article  Google Scholar 

  32. Johnson, K.L., Greenwood, J.A.: An adhesion map for the contact of elastic spheres. J. Colloid Interface Sci. 192, 326–333 (1997)

    Article  Google Scholar 

  33. Doerner, M.F., Nix, W.D.: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1, 601–609 (1986)

    Article  Google Scholar 

  34. Pharr, G.M., Oliver, W.C., Brotzen, F.R.: On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation. J. Mater. Res. 7, 613–617 (1992)

    Article  Google Scholar 

  35. Carpick, R.W., Ogletree, D.F., Salmeron, M.: Lateral stiffness: a new nanomechanical measurement for the determination of shear strengths with friction force microscopy. Appl. Phys. Lett. 70, 1548–1550 (1997)

    Article  Google Scholar 

  36. Oliver, W.C., Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J. Mater. Res. 19, 3–20 (2004)

    Article  Google Scholar 

  37. Hui, C.Y., Lin, Y.Y., Baney, J.M., et al.: The accuracy of the geometric assumptions in the JKR (Johnson–Kendall–Roberts) theory of adhesion. J. Adhes. Sci. Technol. 14, 1297–1319 (2000)

    Article  Google Scholar 

  38. Xu, D., Ravi-Chandar, K., Liechti, K.M.: On scale dependence in friction: transition from intimate to monolayer-lubricated contact. J. Colloid Interface Sci. 318, 507–519 (2008)

    Article  Google Scholar 

  39. Zhang, Y.: Extracting nanobelt mechanical properties from nanoindentation. J. Appl. Phys. 107, 123518 (2010)

    Article  Google Scholar 

  40. Cheng, Y., Cheng, C.: Relationships between hardness, elastic modulus, and work of indentation. Appl. Phys. Lett. 73, 614–616 (1998)

    Article  Google Scholar 

  41. Gao, H., Chiu, S., Lee, J.: Elastic contact versus indentation modeling of multi-layered materials. Int. J. Solids Struct. 29, 2471–2492 (1992)

    Article  Google Scholar 

  42. Constantinescu, A., Korsunsky, A.M., Pison, O., et al.: Symbolic and numerical solution of the axisymmetric indentation problem for a multilayered elastic coating. Int. J. Solids Struct. 50, 2798–2807 (2013)

    Article  Google Scholar 

  43. Press, W.H., Teukolsky, S.A., Vetterling, W.T., et al.: Numerical Recipes in Fortran, 2nd edn. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  44. Greenwood, J.A.: Adhesion of elastic spheres. Proc. R. Soc. Lond. A 453, 1277–1297 (1997)

    Article  MathSciNet  Google Scholar 

  45. Zhang, Y., Zhao, Y.P., Cheng, Z.: Determining the layers? Youngs moduli and thickness from the indentation of a bilayer structure. J. Phys. D Appl. Phys. 51, 065305 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (11772335, 21622304, 61674045, and 21203038) and by the Ministry of Science and Technology (MOST) of China (2016YFA0200700). Z.H. Cheng was supported by the Distinguished Technical Talents Project and the Youth Innovation Promotion Association of Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Gao, F., Zheng, Z. et al. An inverse problem in film/substrate indentation: extracting both the Young’s modulus and thickness of films. Acta Mech. Sin. 34, 1061–1071 (2018). https://doi.org/10.1007/s10409-018-0778-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-018-0778-8

Keywords

Navigation