Skip to main content
Log in

Gyroscopic modes decoupling method in parametric instability analysis of gyroscopic systems

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Traditional procedures to treat vibrations of gyroscopic continua involve direct application of perturbation methods to a system with both a strong gyroscopic term and other weakly coupled terms. In this study, a gyroscopic modes decoupling method is used to obtain an equivalent system with decoupled gyroscopic modes having only weak couplings. Taking the axially moving string as an example, the instability boundaries in the vicinity of parametric resonances are detected using both the traditional coupled gyroscopic system and our system with decoupled gyroscopic modes, and the results are compared to show the advantages and disadvantages of each method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mirtalaie, S.H., Hajabasi, M.A.: A new methodology for modeling and free vibrations analysis of rotating shaft based on the timoshenko beam theory. J. Vib. Acoust. 138, 021012 (2016)

    Article  Google Scholar 

  2. Shahgholi, M., Khadem, S.E., Bab, S.: Nonlinear vibration analysis of a spinning shaft with multi-disks. Meccanica 50, 2293–2307 (2015)

    Article  MathSciNet  Google Scholar 

  3. Guven, U., Celik, A.: On transverse vibrations of functionally graded isotropic linearly elastic rotating solid disks. Mech. Res. Commun. 28, 271–276 (2001)

    Article  Google Scholar 

  4. Khorasany, R.M.H., Hutton, S.G.: On the equilibrium configurations of an elastically constrained rotating disk: an analytical approach. Mech. Res. Commun. 38, 288–293 (2011)

    Article  Google Scholar 

  5. Invernizzi, D., Dozio, L.: A fully consistent linearized model for vibration analysis of rotating beams in the framework of geometrically exact theory. J. Sound Vib. 370, 351–371 (2016)

    Article  Google Scholar 

  6. Ghafarian, M., Ariaei, A.: Free vibration analysis of a system of elastically interconnected rotating tapered Timoshenko beams using differential transform method. Int. J. Mech. Sci. 107, 93–109 (2016)

    Article  Google Scholar 

  7. Bediz, B., Romero, L.A., Ozdoganlar, O.B.: Three dimensional dynamics of rotating structures under mixed boundary conditions. J. Sound Vib. 358, 176–191 (2015)

    Article  Google Scholar 

  8. Wickert, J.A., Mote, C.D.: Classical vibration analysis of axially moving continua. J. Appl. Mech. T Asme 57, 738–744 (1990)

    Article  Google Scholar 

  9. Chen, L.-Q.: Analysis and control of transverse vibrations of axially moving strings. Appl. Mech. Rev. 58, 91–116 (2005)

    Article  Google Scholar 

  10. Chen, L.-Q., Yang, X.-D.: Steady-state response of axially moving viscoelastic beams with pulsating speed: comparison of two nonlinear models. Int. J. Solids Struct. 42, 37–50 (2005)

    Article  Google Scholar 

  11. Ding, H., Chen, L.-Q., Yang, S.-P.: Convergence of Galerkin truncation for dynamic response of finite beams on nonlinear foundations under a moving load. J. Sound Vib. 331, 2426–2442 (2012)

    Article  Google Scholar 

  12. Ding, H., Zhang, G.-C., Chen, L.-Q.: Supercritical equilibrium solutions of axially moving beams with hybrid boundary conditions. Mech. Res. Commun. 38, 52–56 (2011)

    Article  Google Scholar 

  13. Wu, H., Chen, X.W., Fang, Q., et al.: Stability analyses of the mass abrasive projectile high-speed penetrating into concrete target. Part II: structural stability analyses. Acta. Mech. Sin. 30, 943–955 (2014)

    Article  Google Scholar 

  14. Kurki, M., Jeronen, J., Saksa, T., et al.: The origin of in-plane stresses in axially moving orthotropic continua. Int. J. Solids Struct. 81, 43–62 (2016)

    Article  Google Scholar 

  15. Hatami, S., Ronagh, H.R., Azhari, M.: Exact free vibration analysis of axially moving viscoelastic plates. Comput. Struct. 86, 1738–1746 (2008)

    Article  Google Scholar 

  16. Yang, X.-D., Wu, H., Qian, Y.-J., et al.: Nonlinear vibration analysis of axially moving strings based on gyroscopic modes decoupling. J. Sound Vib. 393, 308–320 (2017)

    Article  Google Scholar 

  17. Ghayesh, M.H., Farokhi, H.: Nonlinear dynamical behavior of axially accelerating beams: three-dimensional analysis. J. Comput. Nonlinear Dyn. 11, 011010 (2016)

    Article  Google Scholar 

  18. Banerjee, J.R., Kennedy, D.: Dynamic stiffness method for inplane free vibration of rotating beams including Coriolis effects. J. Sound Vib. 333, 7299–7312 (2014)

    Article  Google Scholar 

  19. Shahgholi, M., Khadem, S.E., Bab, S.: Free vibration analysis of a nonlinear slender rotating shaft with simply support conditions. Mech. Mach. Theory 82, 128–140 (2014)

    Article  Google Scholar 

  20. Yang, X.-D., Yang, S., Qian, Y.-J., et al.: Modal analysis of the gyroscopic continua: comparison of continuous and discretized models. J. Appl. Mech. T Asme 83, 084502 (2016)

    Article  Google Scholar 

  21. Yang, X.-D., Liu, M., Qian, Y.-J., et al.: Linear and nonlinear modal analysis of the axially moving continua based on the invariant manifold method. Acta Mech. 228, 465–474 (2017)

    Article  MathSciNet  Google Scholar 

  22. Huang, J.L., Su, R.K.L., Li, W.H., et al.: Stability and bifurcation of an axially moving beam tuned to three-to-one internal resonances. J. Sound Vib. 330, 471–485 (2011)

    Article  Google Scholar 

  23. Kesimli, A., Ozkaya, E., Bagdatli, S.M.: Nonlinear vibrations of spring-supported axially moving string. Nonlinear Dyn. 81, 1523–1534 (2015)

    Article  MathSciNet  Google Scholar 

  24. Malookani, R.A., van Horssen, W.T.: On resonances and the applicability of Galerkin’s truncation method for an axially moving string with time-varying velocity. J. Sound Vib. 344, 1–17 (2015)

    Article  Google Scholar 

  25. Chen, L.-Q., Tang, Y.-Q., Zu, J.W.: Nonlinear transverse vibration of axially accelerating strings with exact internal resonances and longitudinally varying tensions. Nonlinear Dyn. 76, 1443–1468 (2014)

    Article  Google Scholar 

  26. Sahoo, B., Panda, L.N., Pohit, G.: Combination, principal parametric and internal resonances of an accelerating beam under two frequency parametric excitation. Int. J. Nonlinear Mech. 78, 35–44 (2016)

    Article  Google Scholar 

  27. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2004)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants 11772009, 11672007) and the Beijing Municipal Natural Science Foundation (Grant 3172003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. D. Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, Y.J., Yang, X.D., Wu, H. et al. Gyroscopic modes decoupling method in parametric instability analysis of gyroscopic systems. Acta Mech. Sin. 34, 963–969 (2018). https://doi.org/10.1007/s10409-018-0762-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-018-0762-3

Keywords

Navigation