Advertisement

Acta Mechanica Sinica

, Volume 34, Issue 5, pp 883–895 | Cite as

Closed-form dynamics of a hexarot parallel manipulator by means of the principle of virtual work

  • Siamak Pedrammehr
  • Saeid Nahavandi
  • Hamid Abdi
Research Paper

Abstract

In this research, a systematic approach to solving the inverse dynamics of hexarot manipulators is addressed using the methodology of virtual work. For the first time, a closed form of the mathematical formulation of the standard dynamic model is presented for this class of mechanisms. An efficient algorithm for solving this closed-form dynamic model of the mechanism is developed and it is used to simulate the dynamics of the system for different trajectories. Validation of the proposed model is performed using SimMechanics and it is shown that the results of the proposed mathematical model match with the results obtained by the SimMechanics model.

Keywords

Parallel mechanism Hexarot Simulator Dynamics Virtual work principle 

References

  1. 1.
    Do, W.Q.D., Yang, D.C.H.: Inverse dynamic analysis and simulation of a platform type of robot. J. Robot. Syst. 5, 209–227 (1998)CrossRefGoogle Scholar
  2. 2.
    Riebe, S., Ulbrich, H.: Modeling and online computation of the dynamics of a parallel kinematic with six degrees-offreedom. Arch. Appl. Mech. 72, 81–829 (2003)zbMATHGoogle Scholar
  3. 3.
    Chen, C.T., Liao, T.T.: Trajectory planning of parallel kinematic manipulators for the maximum dynamic load-carrying capacity. Meccanica 51, 1653–1674 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Khalil, W., Guegan, S.: Inverse and direct dynamic modeling of Gough-Stewart robots. IEEE Trans. Robot. 20, 755–761 (2004)CrossRefGoogle Scholar
  5. 5.
    Arian, A., Danaei, B., Masouleh, M.T.: Kinematics and dynamics analysis of a 2-DOF spherical parallel robot. In: 2016 4th International Conference on Robotics and Mechatronics, Iran, October, pp. 154–159 (2016)Google Scholar
  6. 6.
    Schnelle, F., Eberhard, P.: Adaptive nonlinear model predictive control design of a flexible-link manipulator with uncertain parameters. Acta Mech. Sin. 33, 529–542 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Pedrammehr, S., Najdovski, Z., Abdi, H., Nahavandi, S.: Design methodology for a hexarot-based centrifugal high-G simulator. In: 2017 IEEE International Conference on Systems, Man, and Cybernetics, Canada, October, pp. 3255–3260 (2017)Google Scholar
  8. 8.
    Dasgupta, B., Mruthyunjaya, T.S.: Closed-form dynamic equations of the general Stewart platform through Newton–Euler approach. Mech. Mach. Theory 33, 993–1012 (1998)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Pedrammehr, S., Mahboubkhah, M., Khani, N.: Improved dynamic equations for the generally configured Stewart platform manipulator. J. Mech. Sci. Technol. 26, 711–721 (2012)CrossRefGoogle Scholar
  10. 10.
    Harib, K., Srinivasan, K.: Kinematic and dynamic analysis of Stewart platform-based machine tool structures. Robotica 21, 541–554 (2003)CrossRefGoogle Scholar
  11. 11.
    Ding, C.T., Yang, S.X., Gan, C.B.: Input torque sensitivity to uncertain parameters in biped robot. Acta Mech. Sin. 29, 452–461 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Ting, Y., Chen, Y.S., Jar, H.C.: Modeling and control for a Gough–Stewart platform CNC machine. J. Robot. Syst. 21, 609–623 (2004)CrossRefGoogle Scholar
  13. 13.
    Zhuang, F.F., Wang, Q.: Modeling and analysis of rigid multibody systems with driving constraints and frictional translation joints. Acta Mech. Sin. 3, 437–446 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Lee, S.S., Lee, J.M.: Design of a general purpose 6-DOF haptic interface. Mechatronics 13, 697–722 (2003)CrossRefGoogle Scholar
  15. 15.
    Yurt, S.N., Anli, E., Ozkol, I.: On the characterization of the dynamic performances of planar manipulators. Meccanica 42, 187–196 (2007)CrossRefGoogle Scholar
  16. 16.
    Wang, W., Yang, H.Y., Zou, J., et al.: Optimal design of Stewart platforms based on expanding the control bandwidth while considering the hydraulic system design. J. Zhejiang Univ. Sci. A 10, 22–30 (2009)CrossRefGoogle Scholar
  17. 17.
    You, W., Kong, M.X., Du, Z.J., et al.: High efficient inverse dynamic calculation approach for a haptic device with pantograph parallel platform. Multibody Syst. Dyn. 21, 233–247 (2009)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Hu, Q., Jia, Y., Xu, S.: A new computer-oriented approach with efficient variables for multibody dynamics with motion constraints. Acta Astronautica 81, 380–389 (2012)CrossRefGoogle Scholar
  19. 19.
    Jia, Y.H., Hu, Q., Xu, S.J.: Dynamics and adaptive control of a dual-arm space robot with closed-loop constraints and uncertain inertial parameters. Acta Mech. Sin. 30, 112–124 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Hu, Q., Zhang, J.: Dynamics and trajectory planning for reconfigurable space multibody robots. J. Mech. Des. 137, 092304 (2015)CrossRefGoogle Scholar
  21. 21.
    Liu, M.J., Li, C.X., Li, C.N.: Dynamics analysis of the Gough-Stewart platform manipulator. IEEE Trans. Robot. Autom. 16, 94–98 (2000)CrossRefGoogle Scholar
  22. 22.
    Zhang, C.D., Song, S.M.: An efficient method for inverse dynamics of manipulators based on the virtual work principle. J. Robot. Syst. 10, 605–627 (1993)CrossRefGoogle Scholar
  23. 23.
    Wang, J., Gosselin, C.M.: A new approach for the dynamic analysis of parallel manipulators. Multibody Syst. Dyn. 2, 317–334 (1998)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Tsai, L.W.: Solving the inverse dynamics of a Stewart-Gough manipulator by the principle of virtual work. J. Mech. Des. 122, 3–9 (2000)CrossRefGoogle Scholar
  25. 25.
    Gregorio, R.D., Parenti-Castelli, V.: On the characterization of the dynamic performances of planar manipulators. Meccanica 40, 267–279 (2005)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Zhao, Y., Gao, F.: Inverse dynamics of the 6-dof out-parallel manipulator by means of the principle of virtual work. Robotica 27, 259–268 (2009)CrossRefGoogle Scholar
  27. 27.
    Abedinnasab, M.H., Vossoughi, G.R.: Analysis of a 6-DOF redundantly actuated 4-legged parallel mechanism. Nonlinear Dyn. 58, 611–622 (2009)CrossRefGoogle Scholar
  28. 28.
    Lopes, A.M.: Dynamic modeling of a Stewart platform using the generalized momentum approach. Commun. Nonlinear Sci. Numer. Simul. 14, 3389–3401 (2009)CrossRefGoogle Scholar
  29. 29.
    Lopes, A.M., Almeida, F.: The generalized momentum approach to the dynamic modeling of a 6-dof parallel manipulator. Multibody Syst. Dyn. 21, 123–146 (2009)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Miller, K.: Optimal design and modeling of spatial parallel manipulators. Int. J. Robot. Res. 23, 127–140 (2004)CrossRefGoogle Scholar
  31. 31.
    Staicu, S., Zhang, D.: A novel dynamic modelling approach for parallel mechanisms analysis. Robot. Comput. Integr. Manuf. 24, 167–172 (2008)CrossRefGoogle Scholar
  32. 32.
    Pennock, G.R., Oncu, B.A.: Application of screw theory to rigid body dynamics. J. Dyn. Syst. Meas. Control 114, 262–269 (1992)CrossRefGoogle Scholar
  33. 33.
    Wiens, G.J., Hardage, D.S.: Structural dynamics and system identification of parallel kinematic machines. Proc. IDETC/CIE, PA 2, 749–758 (2006)Google Scholar
  34. 34.
    Chen, P., Liu, J.Y., Lu, G.C.: A new subregion mesh method for the investigation of the elastic-plastic impact in flexible multibody systems. Acta Mech. Sin. 33, 189–199 (2017)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Pedrammehr, S., Mahboubkhah, M., Khani, N.: Natural frequencies and mode shapes for vibrations of machine tools hexapod table. In: 1st International Conference on Acoustics and Vibration, Iran, December, pp. 21–22 (2011)Google Scholar
  36. 36.
    Pedrammehr, S.: Investigation of factors influential on the dynamic features of machine tools’ hexapod table. 2nd International Conference on Acoustics and Vibration, Iran, December, pp. 26–27 (2012)Google Scholar
  37. 37.
    Pedrammehr, S., Mahboubkhah, M., Khani, N.: A study on vibration of Stewart platform-based machine tool table. Int. J. Adv. Manuf. Technol. 65, 991–1007 (2013)CrossRefGoogle Scholar
  38. 38.
    Pedrammehr, S., Mahboubkhah, M., Qazani, M.R.C., et al.: Forced vibration analysis of milling machine’s hexapod table under machining forces. Strojniški vestnik-J. Mech. Eng. 60, 158–171 (2014)CrossRefGoogle Scholar
  39. 39.
    Rahmani, A., Ghanbari, A., Pedrammehr, S.: Kinematic analysis for hybrid 2-(6-UPU) manipulator by wavelet neural network. Adv. Mater. Res. 1016, 726–730 (2014)CrossRefGoogle Scholar
  40. 40.
    Qazani, M.R.C., Pedrammehr, S., Nategh, M.J.: A study on motion of machine tools’ hexapod table on freeform surfaces with circular interpolation. Int. J. Adv. Manuf. Technol. 75, 1763–1771 (2014)CrossRefGoogle Scholar
  41. 41.
    Liu, F., Zhang, J., Hu, Q.: A modified constraint force algorithm for flexible multibody dynamics with loop constraints. Nonlinear Dyn. 90, 1885–1906 (2017)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Gan, C.B., Ding, C.T., Yang, S.X.: Dynamical analysis and performance evaluation of a biped robot under multi-source random disturbances. Acta Mech. Sin. 30, 983–994 (2014)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Stewart, D.: A platform with six degrees of freedom. Proc. Inst. Mech. Eng. 180, 371–386 (1965)CrossRefGoogle Scholar
  44. 44.
    Furqan, M., Suhaib, M., Ahmad, N.: Studies on Stewart platform manipulator: a review. J. Mech. Sci. Technol. 31, 4459–4470 (2017)CrossRefGoogle Scholar
  45. 45.
    Pedrammehr, S., Qazani, M.R.C., Abdi, H., et al.: Mathematical modelling of linear motion error for Hexarot parallel manipulators. Appl. Math. Model. 40, 942–954 (2016)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Pedrammehr, S., Danaei, B., Abdi, H., et al.: Dynamic analysis of Hexarot: axis symmetric parallel manipulator. Robotica 36, 225–240 (2018).  https://doi.org/10.1017/S0263574717000315 CrossRefGoogle Scholar
  47. 47.
    Mohajerpoor, R., Rezaei, M., Talebi, A., et al.: robust adaptive hybrid force/position control scheme of two planar manipulators handling an unknown object interacting with an environment. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 226, 509–522 (2012)CrossRefGoogle Scholar
  48. 48.
    Danaei, B., Arian, A., Masouleh, M.T., et al.: Dynamic modeling and base inertial parameters determination of a 2-DOF spherical parallel mechanism. Multibody Syst. Dyn. 41, 367–390 (2017)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Al-Wais, S., Mohajerpoor, R., Shanmugam, L., et al.: Improved delay-dependent stability criteria for telerobotic systems with time-varying delays. IEEE Trans. Syst. Man Cybern. Syst. 99, 1–15 (2017)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Siamak Pedrammehr
    • 1
  • Saeid Nahavandi
    • 1
  • Hamid Abdi
    • 1
  1. 1.Institute for Intelligent Systems Research and InnovationDeakin UniversityGeelongAustralia

Personalised recommendations