Acta Mechanica Sinica

, Volume 34, Issue 3, pp 462–474 | Cite as

The dimension split element-free Galerkin method for three-dimensional potential problems

Research Paper
  • 21 Downloads

Abstract

This paper presents the dimension split element-free Galerkin (DSEFG) method for three-dimensional potential problems, and the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-dimensional potential problem can be transformed into a series of two-dimensional problems. For these two-dimensional problems, the improved moving least-squares (IMLS) approximation is applied to construct the shape function, which uses an orthogonal function system with a weight function as the basis functions. The Galerkin weak form is applied to obtain a discretized system equation, and the penalty method is employed to impose the essential boundary condition. The finite difference method is selected in the splitting direction. For the purposes of demonstration, some selected numerical examples are solved using the DSEFG method. The convergence study and error analysis of the DSEFG method are presented. The numerical examples show that the DSEFG method has greater computational precision and computational efficiency than the IEFG method.

Keywords

Dimension split method Improved moving least-squares (IMLS) approximation Improved element-free Galerkin (IEFG) method Finite difference method (FDM) Dimension split element-free Galerkin (DSEFG) method Potential problem 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants 11571223, 51404160) and Shanxi Province Science Foundation for Youths (Grant 2014021025-1).

References

  1. 1.
    Belytschko, T., Krongauz, Y., Organ, D., et al.: Meshless methods: an overview and recent developments. Comput. Methods Appl. Mech. Eng. 139, 3–47 (1996)CrossRefMATHGoogle Scholar
  2. 2.
    Dolbow, J., Belytschko, T.: An introduction to programming the meshless element free Galerkin method. Arch. Comput. Methods Eng. 5, 207–241 (1998)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Canelas, A., Laurain, A., Novotny, A.A.: A new reconstruction method for the inverse potential problem. J. Comput. Phys. 268, 417–431 (2014)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Sun, L.L., Chen, W., Zhang, C.Z.: A new formulation of regularized meshless method applied to interior and exterior anisotropic potential problems. Appl. Math. Model. 37, 7452–7464 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Khaji, N., Javaran, S.H.: New complex Fourier shape functions for the analysis of two-dimensional potential problems using boundary element method. Eng. Anal. Bound. Elem. 37, 260–272 (2013)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Gong, Y.P., Dong, C.Y., Qin, X.C.: An isogeometric boundary element method for three dimensional potential problems. J. Comput. Appl. Math. 313, 454–468 (2017)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Sun, F.L., Zhang, Y.M., Young, D.L., et al.: A new boundary meshfree method for potential problems. Adv. Eng. Softw. 100, 32–42 (2016)CrossRefGoogle Scholar
  8. 8.
    Mukherjee, Y.X., Mukherjee, S.: The boundary node method for potential problems. Int. J. Numer. Methods Eng. 40, 797–815 (1997)CrossRefMATHGoogle Scholar
  9. 9.
    Chati, M.K., Mukherjee, S.: The boundary node method for three-dimensional problems in potential theory. Int. J. Numer. Methods Eng. 47, 1523–1547 (2000)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Zhang, Y.M., Sun, F.L., Young, D.L., et al.: Average source boundary node method for potential problems. Eng. Anal. Bound. Elem. 70, 114–125 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Li, X.L.: Error estimates for the moving least-square approximation and the element-free Galerkin method in n-dimensional spaces. Appl. Numer. Math. 99, 77–97 (2016)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Lu, Y.Y., Belytschko, T., Gu, L.: A new implementation of the element free Galerkin method. Comput. Methods Appl. Mech. Eng. 113, 397–414 (1994)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Li, X.L., Zhang, S.G., Wang, Y., et al.: Analysis and application of the element-free Galerkin method for nonlinear Sine-Gordon and generalized Sinh-Gordon equations. Comput. Math. Appl. 71, 1655–1678 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Vahid, S.: Topology optimization using bi-directional evolutionary structural optimization based on the element-free Galerkin method. Eng. Optim. 48, 380–396 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Dehghan, M., Abbaszadeh, M., Mohebbi, A.: The use of interpolating element-free Galerkin technique for solving 2D generalized Benjamin–Bona–Mahony–Burgers and regularized long-wave equations on non-rectangular domains with error estimate. J. Comput. Appl. Math. 286, 211–231 (2015)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Joldes, G.R., Wittek, A., Miller, K.: Adaptive numerical integration in element-free Galerkin methods for elliptic boundary value problems. Eng. Anal. Bound. Elem. 51, 52–63 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Chen, L., Liu, C., Ma, H.P., et al.: An interpolating local Petrov–Galerkin method for potential problems. Int. J. Appl. Mech. 6, 1450009 (2014)CrossRefGoogle Scholar
  18. 18.
    Deng, Y.J., Liu, C., Peng, M.J., et al.: The interpolating complex variable element-free Galerkin method for temperature field problems. Int. J. Appl. Mech. 7, 1550017 (2015)CrossRefGoogle Scholar
  19. 19.
    Peng, M.J., Cheng, Y.M.: A boundary element-free method (BEFM) for two-dimensional potential problems. Eng. Anal. Bound. Elem. 33, 77–82 (2009)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Lian, H., Kerfriden, P., Bordas, S.: Implementation of regularized isogeometric boundary element methods for gradient-based shape optimization in two-dimensional linear elasticity. Int. J. Numer. Methods Eng. 106, 972–1017 (2016)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Chen, T., Raju, I.S.: A coupled finite element and meshless local Petrov–Galerkin method for two-dimensional potential problems. Comput. Methods Appl. Mech. Eng. 192, 4533–4550 (2003)CrossRefMATHGoogle Scholar
  22. 22.
    Cheng, Y.M., Chen, M.J.: A boundary element-free method for linear elasticity. Acta. Mech. Sin. 19, 181–186 (2003)CrossRefGoogle Scholar
  23. 23.
    Zhang, Z., Liew, K.M., Cheng, Y.M.: Coupling of the improved element-free Galerkin and boundary element methods for two-dimensional elasticity problems. Eng. Anal. Bound. Elem. 32, 100–107 (2008)CrossRefMATHGoogle Scholar
  24. 24.
    Zhang, Z., Liew, K.M., Cheng, Y.M., et al.: Analyzing 2D fracture problems with the improved element-free Galerkin method. Eng. Anal. Bound. Elem. 32, 241–250 (2008)CrossRefMATHGoogle Scholar
  25. 25.
    Zhang, Z., Li, D.M., Cheng, Y.M., et al.: The improved element-free Galerkin method for three-dimensional wave equation. Acta Mech. Sin. 28, 808–818 (2012)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Zhang, Z., Hao, S.Y., Liew, K.M., et al.: The improved element-free Galerkin method for two-dimensional elastodynamics problems. Eng. Anal. Bound. Elem. 37, 1576–1584 (2013)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Li, K.T., Huang, A.X.: Mathematical aspect of the stream-function equations of compressible turbomachinery flows and their finite element approximation using optimal control. Comput. Methods Appl. Mech. Eng. 41, 175–194 (1983)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Li, K.T., Huang, A.X., Zhang, W.L.: A dimension split method for the 3-D compressible Navier–Stokes equations in turbomachine. Commun. Numer. Methods Eng. 18, 1–14 (2002)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Li, K.T., Yu, J.P., Shi, F., et al.: Dimension splitting method for the three dimensional rotating Navier–Stokes equations. Acta Math. Appl. Sinica 28, 417–442 (2012)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Chen, H., Li, K.T., Wang, S.: A dimension split method for the incompressible Navier–Stokes equations in three dimensions. Int. J. Numer. Methods Fluids 73, 409–435 (2013)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Li, K.T., Shen, X.Q.: A dimensional splitting method for the linearly elastic shell. Int. J. Comput. Math. 84, 807–824 (2007)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Hansen, E., Ostermann, A.: Dimension splitting for evolution equations. Numer. Math. 108, 557–570 (2008)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Hansen, E., Ostermann, A.: Dimension splitting for quasilinear parabolic equations. IMA J. Numer. Anal. 30, 857–869 (2010)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Hou, R.Y., Wei, H.B.: Dimension splitting algorithm for a three-dimensional elliptic equation. Int. J. Comput. Math. 89, 112–127 (2012)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    ter Maten, E.J.W.: Splitting methods for fourth order parabolic partial differential equations. Computing 37, 335–350 (1986)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Bragin, M.D., Rogov, B.V.: On exact dimensional splitting for a multidimensional scalar quasilinear Hyperbolic conservation law. Dokl. Math. 94, 382–386 (2016)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    D’souza, R.M., Margolus, N.H., Smith, M.A.: Dimension-splitting for simplifying diffusion in lattice-gas models. J. Stat. Phys. 107, 401–422 (2002)CrossRefMATHGoogle Scholar
  38. 38.
    Cheng, H., Peng, M.J., Cheng, Y.M.: The hybrid improved complex variable element-free Galerkin method for three-dimensional potential problems. Eng. Anal. Bound. Elem. 84, 52–62 (2017)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Cheng, H., Peng, M.J., Cheng, Y.M.: A fast complex variable element-free Galerkin method for three-dimensional wave propagation problems. Int. J. Appl. Mech. 9, 1750090 (2017)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Z. J. Meng
    • 1
    • 2
  • H. Cheng
    • 3
  • L. D. Ma
    • 4
  • Y. M. Cheng
    • 1
  1. 1.Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy EngineeringShanghai UniversityShanghaiChina
  2. 2.School of Applied ScienceTaiyuan University of Science and TechnologyTaiyuanChina
  3. 3.Department of Civil EngineeringShanghai UniversityShanghaiChina
  4. 4.School of Materials Science and EngineeringTaiyuan University of Science and TechnologyTaiyuanChina

Personalised recommendations