Skip to main content
Log in

The spanwise spectra in wall-bounded turbulence

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The pre-multiplied spanwise energy spectra of streamwise velocity fluctuations are investigated in this paper. Two distinct spectral peaks in the spanwise spectra are observed in low-Reynolds-number wall-bounded turbulence. The spectra are calculated from direct numerical simulation (DNS) of turbulent channel flows and zero-pressure-gradient boundary layer flows. These two peaks locate in the near-wall and outer regions and are referred to as the inner peak and the outer peak, respectively. This result implies that the streamwise velocity fluctuations can be separated into large and small scales in the spanwise direction even though the friction Reynolds number \(Re_\tau \) can be as low as 1000. The properties of the inner and outer peaks in the spanwise spectra are analyzed. The locations of the inner peak are invariant over a range of Reynolds numbers. However, the locations of the outer peak are associated with the Reynolds number, which are much higher than those of the outer peak of the pre-multiplied streamwise energy spectra of the streamwise velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Marusic, I., McKeon, B.J., Monkewitz, P.A., et al.: Wall-bounded turbulent flows at high reynolds numbers: recent advances and key issues. Phys. Fluids 22, 065103 (2010)

  2. Kline, S.J., Reynolds, W.C., Schraub, F.A., et al.: The structure of turbulent boundary layers. J. Fluid Mech. 30, 741–773 (1967)

    Article  Google Scholar 

  3. Smith, C.R., Metzler, S.P.: The characteristics of low-speed streaks in the near-wall region of a turbulent boundary-layer. J. Fluid Mech. 129, 27–54 (1983)

    Article  Google Scholar 

  4. Marusic, I., Mathis, R., Hutchins, N.: High reynolds number effects in wall turbulence. Int. J. Heat Fluid Flow 31, 418–428 (2010)

    Article  Google Scholar 

  5. Jiménez, J., Pinelli, A.: The autonomous cycle of near-wall turbulence. J. Fluid Mech. 389, 335–359 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Schoppa, W., Hussain, F.: Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453, 57–108 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Wang, Y.S., Huang, W.X., Xu, C.X.: On hairpin vortex generation from near-wall streamwise vortices. Acta Mech. Sin. 31, 139–152 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hutchins, N., Marusic, I.: Large-scale influences in near-wall turbulence. Philos. Trans. A Math. Phys. Eng. Sci. 365, 647–664 (2007)

    Article  MATH  Google Scholar 

  9. Smits, A.J., McKeon, B.J., Marusic, I.: High-Reynolds number wall turbulence. Ann. Rev. Fluid Mech. 43, 353–375 (2011)

    Article  MATH  Google Scholar 

  10. Lee, M., Moser, R.D.: Direct numerical simulation of turbulent channel flow up to \(Re_\tau \approx \) 5200. J. Fluid Mech. 774, 395–415 (2015)

    Article  Google Scholar 

  11. Hutchins, N., Marusic, I.: Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 1–28 (2007)

    Article  MATH  Google Scholar 

  12. Balakumar, B.J., Adrian, R.J.: Large- and very-large-scale motions in channel and boundary-layer flows. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 365, 665–681 (2007)

    Article  MATH  Google Scholar 

  13. Kim, K.C., Adrian, R.J.: Very large-scale motion in the outer layer. Phys. Fluids 11, 417 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. del Álamo, J.C., Jiménez, J.: Linear energy amplification in turbulent channels. J. Fluid Mech. 559, 205–213 (2006)

    Article  MATH  Google Scholar 

  15. McKeon, B.J., Sharma, A.S.: A critical-layer framework for turbulent pipe flow. J. Fluid Mech. 658, 336–382 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Townsend, A.A.: Equilibrium layers and wall turbulence. J. Fluid Mech. 11, 97–120 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  17. Townsend, A.A.: The Structure of Turbulent Shear Flow. Cambridge University Press, Cambridge (1980)

    MATH  Google Scholar 

  18. Hoyas, S., Jiménez, J.: Scaling of the velocity fluctuations in turbulent channels up to \(Re_{\tau }\) = 2003. Phys. Fluids 18, 011702 (2006)

    Article  Google Scholar 

  19. Ganapathisubramani, B., Hutchins, N., Monty, J.P., et al.: Amplitude and frequency modulation in wall turbulence. J. Fluid Mech. 712, 61–91 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tomkins, C.D., Adrian, R.J.: Spanwise structure and scale growth in turbulent boundary layers. J. Fluid Mech. 490, 37–74 (2003)

    Article  MATH  Google Scholar 

  21. Abe, H., Kawamura, H., Choi, H.: Very large-scale structures and their effects on the wall shear-stress fluctuations in a turbulent channel flow up to Re = 640. J. Fluids Eng. 126, 835–843 (2004)

    Article  Google Scholar 

  22. Iwamoto, K., Kasagi, N., Suzuki, Y.: Dynamical roles of large-scale structures in turbulent channel flow. Comput. Mech. WCCM VI in Conjunction with APCOM 4, 5–10 (2004)

    Google Scholar 

  23. EI Khoury, G.K., Schlatter, P., Brethouwer, G., et al.: Turbulent pipe flow: statistics, Re-dependence, structures and similarities with channel and boundary layer flows. J. Phys. Conf. Ser. 506, 012010 (2014)

    Article  Google Scholar 

  24. Sillero, J.A., Jiménez, J., Moser, R.D.: One-point statistics for turbulent wall-bounded flows at reynolds numbers up to \(\delta ^+\) = 2000. Phys. Fluids 25, 105102 (2013)

    Article  Google Scholar 

  25. Hwang, Y.: Statistical structure of self-sustaining attached eddies in turbulent channel flow. J. Fluid Mech. 767, 254–289 (2015)

    Article  Google Scholar 

  26. Lozano-Duran, A., Jiménez, J.: Effect of the computational domain on direct simulations of turbulent channels up to \(Re_\tau \)=4200. Phys. Fluids 26, 011702 (2014)

    Article  Google Scholar 

  27. Perry, A.E., Henbest, S., Chong, M.S.: A theoretical and experimental study of wall turbulence. J. Fluid Mech. 165, 163–199 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  28. Perlman, E., Burns, R., Li, Y., et al.: Data exploration of turbulence simulations using a database cluster. In: ACM/IEEE Conference on High Performance Networking and Computing, SC 2007, November 10-16, Reno, Nevada, USA, 1–11 (2007)

  29. Li, Y., Perlman, E., Wan, M.P., et al.: A public turbulence database cluster and applications to study lagrangian evolution of velocity increments in turbulence. J. Turbulence 9, 1–29 (2008)

    Article  MATH  Google Scholar 

  30. Graham, J., Kanov, K., Yang, X.I.A., et al.: A web services accessible database of turbulent channel flow and its use for testing a new integral wall model for les. J. Turbulence 17, 181–215 (2016)

    Article  Google Scholar 

  31. Mathis, R., Hutchins, N., Marusic, I.: Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech. 628, 311–337 (2009)

    Article  MATH  Google Scholar 

  32. Mathis, R., Hutchins, N., Marusic, I.: A predictive inner-outer model for streamwise turbulence statistics in wall-bounded flows. J. Fluid Mech. 681, 537–566 (2011)

    Article  MATH  Google Scholar 

  33. Vallikivi, M., Ganapathisubramani, B., Smits, A.J.: Spectral scaling in boundary layers and pipes at very high Reynolds numbers. J. Fluid Mech. 771, 303–326 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants 11302238, 11232011, 11572331, and 11490551). The authors would like to acknowledge the support from the Strategic Priority Research Program (Grant XDB22040104), the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (Grant QYZDJ-SSW-SYS002), and the National Basic Research Program of China (973 Program 2013CB834100 : Nonlinear Science).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Wei He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, HP., Wang, SZ. & He, GW. The spanwise spectra in wall-bounded turbulence. Acta Mech. Sin. 34, 452–461 (2018). https://doi.org/10.1007/s10409-017-0731-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-017-0731-2

Keywords

Navigation