Acta Mechanica Sinica

, Volume 34, Issue 2, pp 266–274 | Cite as

Mechanical properties of gas hydrate-bearing sediments during hydrate dissociation

  • X. H. Zhang
  • D. S. Luo
  • X. B. Lu
  • L. L. Liu
  • C. L. Liu
Research Paper
  • 131 Downloads

Abstract

The changes in the mechanical properties of gas hydrate-bearing sediments (GHBS) induced by gas hydrate (GH) dissociation are essential to the evaluation of GH exploration and stratum instabilities. Previous studies present substantial mechanical data and constitutive models for GHBS at a given GH saturation under the non-dissociated condition. In this paper, GHBS was formed by the gas saturated method, GH was dissociated by depressurization until the GH saturation reached different dissociation degrees. The stress–strain curves were measured using triaxial tests at a same pore gas pressure and different confining pressures. The results show that the shear strength decreases progressively by 30%–90% of the initial value with GH dissociation, and the modulus decreases by 50% –75%. Simplified relationships for the modulus, cohesion, and internal friction angle with GH dissociated saturation were presented.

Keywords

Gas hydrate-bearing sediments Dissociation Mechanical properties Shear strength Triaxial test 

Notes

Acknowledgements

The project was supported by the National Natural Science Foundation of China (Grants 41376078, 51639008, and 51239010) the China Geological Survey (Grant DD20160216), and the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant 2017027).

References

  1. 1.
    Hauge, L. P., Birkedal, K. A., Ersland, G., et al.: Methane production from natural gas hydrates by CO\(_{2}\) replacement-review of lab experiments and field trial. Society of Petroleum Engineers, SPE-169198-MS (2014)Google Scholar
  2. 2.
    Lee, S., Kim, S.: Onshore and offshore gas hydrate production tests. Econ. Environ. Geol. 47, 275–289 (2014)CrossRefGoogle Scholar
  3. 3.
    Terao, Y., Lay, K., Yamamoto, K.: Design of the surface flow test system for 1st offshore production test of methane hydrate. In: Offshore Technology Conference-Asia, OTC-24719-MS, Malaysia, March 25–28 (2015)Google Scholar
  4. 4.
    Kimoto, S., Oka, F., Fushita, T.: A chemo-thermo-mechanically coupled analysis of ground deformation induced by gas hydrate dissociation. Int. J. Mech. Sci. 52, 365–376 (2010)CrossRefMATHGoogle Scholar
  5. 5.
    Kwon, T.H., Oh, T.M., Choo, Y.W., et al.: Geomechanical and thermal responses of hydrate bearing sediments subjected to thermal simulation: physical modeling using a geotechnical centrifuge. Energy Fuels 27, 4507–4522 (2013)CrossRefGoogle Scholar
  6. 6.
    Yoneda, J., Masui, A., Konno, Y., et al.: Mechanical properties of hydrate-bearing turbidite reservoir in the first gas production test site of the eastern Nankai trough. Mar. Pet. Geol. 66, 471–486 (2015)CrossRefGoogle Scholar
  7. 7.
    Waite, W.F., Santamarina, J.C., Cortes, D.D., et al.: Physical properties of hydrate-bearing sediments. Rev. Geophys. 47, 1–38 (2009)CrossRefGoogle Scholar
  8. 8.
    Clayton, C.R.I., Priest, J.A., Best, A.I.: The effects of disseminated methane hydrate on the dynamic stiffness and damping of a sand. Geotechnique 55, 423–434 (2005)CrossRefGoogle Scholar
  9. 9.
    Winters, W.J., Pecher, I.A., Waite, W.F., et al.: Physical properties and rock physics models of sediment containing natural and laboratory-formed methane gas hydrate. Am. Mineral. 89, 1221–1227 (2004)CrossRefGoogle Scholar
  10. 10.
    Winters, W.J., Waite, W.F., Mason, D.H., et al.: Methane gas hydrate effect on sediment acoustic and strength properties. J. Pet. Sci. Eng. 56, 127–135 (2007)CrossRefGoogle Scholar
  11. 11.
    Miyazaki, K., Masui, A.: Tri-axial compressive properties of artificial methane hydrate bearing sediment. J. Geophys. Res. 116, B06102 (2011)Google Scholar
  12. 12.
    Hyodo, M., Li, Y.H., Yoneda, J., et al.: Effects of dissociation on the shear strength and deformation behavior of methane hydrate-bearing sediments. Mar. Pet. Geol. 51, 52–62 (2014)CrossRefGoogle Scholar
  13. 13.
    Zhang, X.H., Liu, L.L., Zhou, J.B., et al.: A model for the elastic modulus of hydrate-bearing sediments. Int. J. Offshore Polar 25, 314–319 (2015a)Google Scholar
  14. 14.
    Zhang, X.H., Lu, X.B., Shi, Y.H., et al.: Study on the mechanical properties of hydrate-bearing silty clay. Mar. Pet. Geol. 67, 72–80 (2015b)CrossRefGoogle Scholar
  15. 15.
    Zhang, X.H., Lu, X.B., Zhang, L.M., et al.: Experimental study on mechanical properties of methane-hydrate-bearing sediments. Acta Mech. Sin. 28, 1356–1366 (2012)CrossRefGoogle Scholar
  16. 16.
    Li, Y.H., Song, Y.C., Liu, W., et al.: Analysis of mechanical properties and strength criteria of methane hydrate-bearing sediments. Int. J. Offshore Polar 22, 290–296 (2012)Google Scholar
  17. 17.
    Miyazaki, K., Tenma, N., Aoki, K., et al.: A nonlinear elastic model for triaxial compressive properties of artificial methane-hydrate-bearing sediment samples. Energies 5, 4057–4075 (2012)CrossRefGoogle Scholar
  18. 18.
    Jiang, M.J., Sun, Y.G., Yang, Q.J.: A simple distinct element modeling of the mechanical behavior of methane hydrate-bearing sediments in deep seabed. Granul. Matter 15, 209–220 (2013)CrossRefGoogle Scholar
  19. 19.
    Pinkert, S., Grozic, J.L.H., Priest, J.A.: Strain-softening model for hydrate-bearing sands. Int. J. Geomech. 15, 04015007 (2015)CrossRefGoogle Scholar
  20. 20.
    Pinkert, S., Grozic, J.L.H.: Experimental verification of a prediction model for hydrate-bearing sand. J. Geophys. Res. Solid Earth 121, 4147–4155 (2016)CrossRefGoogle Scholar
  21. 21.
    Hyodo, M., Li, Y.H., Yoneda, J., et al.: Mechanical behavior of gas-saturated methane hydrate-bearing sediments. J. Geophys. Res. Solid Earth 118, 5185–5194 (2013)CrossRefGoogle Scholar
  22. 22.
    Li, Y.H., Liu, W.G., Zhu, Y.M., et al.: Mechanical behaviors of permafrost-associated methane hydrate-bearing sediments under different mining methods. Appl. Energy 162, 1627–1632 (2016)CrossRefGoogle Scholar
  23. 23.
    Sha, Z.B., Liang, J.Q., Zhang, G.X., et al.: A seepage gas hydrate system in northern South China sea: seismic and well log interpretations. Mar. Geol. 366, 69–78 (2015)CrossRefGoogle Scholar
  24. 24.
    Liu, L.L.: Evolution of gas hydrate dissociation front in hydrate-bearing sediment. [Ph.D. Thesis], Institute of Mechanics, Chinese Academy of Sciences, China (2013)Google Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • X. H. Zhang
    • 1
    • 2
  • D. S. Luo
    • 1
  • X. B. Lu
    • 1
    • 2
  • L. L. Liu
    • 3
    • 4
  • C. L. Liu
    • 3
    • 4
  1. 1.Institute of MechanicsChinese Academy of SciencesBeijingChina
  2. 2.College of EngineeringUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.Key Laboratory of Gas HydrateMinistry of Land and ResourcesQingdaoChina
  4. 4.Qingdao Institute of Marine GeologyQingdaoChina

Personalised recommendations