Acta Mechanica Sinica

, Volume 33, Issue 4, pp 709–724 | Cite as

Numerical stabilities of loosely coupled methods for robust modeling of lightweight and flexible structures in incompressible and viscous flows

Research Paper

Abstract

The growing interest to examine the hydroelastic dynamics and stabilities of lightweight and flexible materials requires robust and accurate fluid–structure interaction (FSI) models. Classically, partitioned fluid and structure solvers are easier to implement compared to monolithic methods; however, partitioned FSI models are vulnerable to numerical (“virtual added mass”) instabilities for cases when the solid to fluid density ratio is low and if the flow is incompressible. As a partitioned method, the loosely hybrid coupled (LHC) method, which was introduced and validated in Young et al. (Acta Mech. Sin. 28:1030–1041, 2012), has been successfully used to efficiently and stably model lightweight and flexible structures. The LHC method achieves its numerical stability by, in addition to the viscous fluid forces, embedding potential flow approximations of the fluid induced forces to transform the partitioned FSI model into a semi-implicit scheme. The objective of this work is to derive and validate the numerical stability boundary of the LHC. The results show that the stability boundary of the LHC is much wider than traditional loosely coupled methods for a variety of numerical integration schemes. The results also show that inclusion of an estimate of the fluid inertial forces is the most critical to ensure the numerical stability when solving for fluid–structure interaction problems involving cases with a solid to fluid-added mass ratio less than one.

Keywords

Numerical stability Fluid–structure interaction Loosely hybrid coupling method Incompressible flow Partitioned methods Lightweight structures 

Nomenclature

\(A_\mathrm{c}^\mathrm{M} \)

Nondimensional \(C_\mathrm{f}^\mathrm{M} \, (={C_\mathrm{f}^\mathrm{M} }/{\rho _\mathrm{f} Ub^{3}})\)

\(A_\mathrm{k}^\mathrm{M} \)

Nondimensional \(K_\mathrm{f}^\mathrm{M} \, (={K_\mathrm{f}^\mathrm{M} }/{\rho _\mathrm{f} U^{2}b^{2}})\)

\(A_\mathrm{m}^\mathrm{M} \)

Nondimensional \(M_\mathrm{f}^\mathrm{M} \,(={M_\mathrm{f}^\mathrm{M} }/{\rho _\mathrm{f} b^{4}})\)

\(A_\mathrm{c}^\mathrm{P} \)

Nondimensional \(C_\mathrm{f}^\mathrm{P} \,(={C_\mathrm{f}^\mathrm{P} }/{\rho _\mathrm{f} Ub^{3}})\)

\(A_\mathrm{k}^\mathrm{P} \)

Nondimensional \(K_\mathrm{f}^\mathrm{P} \,(={K_\mathrm{f}^\mathrm{P} }/{\rho _\mathrm{f} U^{2}b^{2}})\)

\(A_\mathrm{m}^\mathrm{P} \)

Nondimensional \(M_\mathrm{f}^\mathrm{P} \,(={M_\mathrm{f}^\mathrm{P} }/{\rho _\mathrm{f} b^{4}})\)

ba

Distance to E.A. from the foil’s mid-chord location

b

Foil’s half chord length

\(\mathbf{C}\)

Foil’s nondimensional radius of gyration \((={I_\theta }/{\rho _\mathrm{s} b^{4}})\)

C.G.

Foil’s center of gravity

\(\tilde{C}_\mathrm{e}\)

Part of the total fluid and solid damping treated explicitly (Eq. (12))

\(C_\mathrm{f}^\mathrm{M}\)

Empirically estimated fluid–induced torsion damping from experiments and viscous simulations

\(C_\mathrm{f}^\mathrm{P}\)

Potential-flow estimation of the fluid–induced torsion damping

\(\tilde{C}_\mathrm{i}\)

Part of the total fluid and solid damping treated implicitly (Eq. (12))

\(C_\theta \)

Foil’s torsional damping value per unit span

c

Foil’s chord length

DOF

Degree of freedom

E.A.

Foil’s elastic axis

FC

Fully-coupled

FSI

Fluid–structure interaction

\(I_\theta \)

Foil’s mass moment of inertia per unit span

\(\tilde{K}_\mathrm{e}\)

Part of the total fluid and solid damping treated explicitly (Eq. (12))

\(K_\mathrm{f}^\mathrm{M}\)

Empirically estimated fluid–induced torsion stiffness from experiments and viscous simulations

\(K_\mathrm{f}^\mathrm{P}\)

Potential-flow estimation of the fluid–induced torsion stiffness

\(\tilde{K}_\mathrm{i}\)

Part of the total fluid and solid damping treated implicitly (Eq. (12))

\(K_\theta \)

Foil’s torsional stiffness per unit span

k

Reduced frequency \((={\omega b}/U)\)

LC

Loosely coupled

LHC

Loosely hybrid coupled

\(\tilde{M}_\mathrm{e} \)

Part of the total fluid and solid mass treated explicitly (Eq. (12))

\(M_\mathrm{f}^\mathrm{M} \)

Empirically estimated fluid-added moment of inertia from experiments or viscous simulations

\(M_\mathrm{f}^\mathrm{P} \)

Potential-flow estimation of the fluid-added moment of inertia

\(M_{\mathrm{fluid}}\)

Fluid–induced moment per unit span

\(M_{\mathrm{fluid}}^\mathrm{E} \)

Estimated fluid–induced moment per unit span

\(M_{\mathrm{fluid}}^\mathrm{M}\)

Empirically estimated fluid–induced moment on the foil per unit span from experiments or viscous simulations

\(M_{\mathrm{fluid}}^\mathrm{P} \)

Potential-flow estimation of the fluid–induced moment per unit span

\(\tilde{M}_\mathrm{i} \)

Part of the total fluid and solid mass treated implicitly (Eq. (12))

n

Discrete time-level \((t=n\Delta t)\)

Re

Reynolds number \((={Uc}/{\upsilon _\mathrm{f} })\)

s

Foil’s span length

t

Time

\(\bar{{t}}\)

Nondimensional time \((={tU}/b)\)

U

Inflow speed

\(\bar{{U}}\)

Reduced speed \((=U/b\omega _\theta )\)

\(x_\theta \)

Distance to the C.G. from E.A. positive towards the foil trailing edge

\(\alpha \)

Fraction of the fluid-added mass used for \(A_\mathrm{m}^\mathrm{P} \)\(A_\mathrm{m}^\mathrm{M} \)

\(\Delta t\)

Time-step size

\(\Delta \bar{{t}}\)

Nondimensional time-step size

\(\theta \)

Foil’s twist angle at its E.A.

\(\lambda \)

Growth factor (in time) of \(\theta \, (\theta _{n+1} =\lambda \theta _n )\)

\(\mu \)

Solid to fluid density ratio \((={\rho _\mathrm{s} }/{\rho _\mathrm{f} })\)

\(\upsilon _\mathrm{f} \)

Fluid’s kinematic viscosity

\(\xi _\theta \)

Foil’s damping coefficient in air \((={C_\theta }/{2I_\theta \omega _\theta })\)

\(\rho _\mathrm{f} \)

Fluid’s density

\(\rho _\mathrm{s} \)

Foil’s density

\(\phi \)

Theodorsen’s function (Eq. (36))

\(\omega \)

Foil’s primary vibration frequency

\(\omega _\mathrm{n} \)

Foil’s twisting natural frequency in water

\(\omega _\theta \)

Foil’s twisting natural frequency in air

References

  1. 1.
    Akcabay, D.T., Young, Y.L.: Hydroelastic response and energy harvesting potential of flexible piezoelectric beams in viscous flow. Phys. Fluids 24, 054106 (2012)CrossRefGoogle Scholar
  2. 2.
    Bazilevs, Y., Hsu, M.-C., Kiendl, J., et al.: 3D simulation of wind turbine rotors at full scale. Part II: fluid–structure interaction modeling with composite blades. Int. J. Numer. Method. Fluids 65, 236–253 (2011)CrossRefMATHGoogle Scholar
  3. 3.
    Dumont, Vierendeels J., Verdonck, P.R.: A partitioned strongly coupled fluid–structure interaction method to model heart valve dynamics. J. Comput. Appl. Math. 215, 602–609 (2008)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Young, Y.L.: Fluid–structure interaction analysis of flexible composite marine propellers. J. Fluids Struct. 24, 799–818 (2008)CrossRefGoogle Scholar
  5. 5.
    Lian, Y., Shyy W.: Three-dimensional fluid–structure interactions of a membrane wing for micro air vehicle applications. In: 44th AIAA, ASME, ASCE, AHS Structures, Structural Dynamics, and Materials Conference, Norfolk, April 7–10 (2003). doi:10.2514/6.2003-1726
  6. 6.
    Leroyer, A., Visonneau, M.: Numerical methods for RANSE simulations of a self-propelled fish-like body. J. Fluids Struct. 20, 975–991 (2005)CrossRefGoogle Scholar
  7. 7.
    Motley, M.R., Young, Y.L.: Scaling of the transient hydroelastic response and failure mechanisms of self-adaptive composite marine propellers. Int. J. Rotat. Mach. 2012, 632856 (2012)Google Scholar
  8. 8.
    Akcabay, D.T., Young, Y.L.: Scaling the dynamic response and energy harvesting potential of piezoelectric beams. Appl. Phys. Lett. 101, 264104 (2012). doi:10.1063/1.4773210
  9. 9.
    Young, Y.L.: Dynamic hydroelastic scaling of self-adaptive composite marine rotors. Compos. Struct. 92, 97–106 (2010)CrossRefGoogle Scholar
  10. 10.
    Heil, M.: An efficient solver for the fully coupled solution of large-displacement fluid–structure interaction problems. Comput. Method. Appl. Mech. Eng. 193, 1–23 (2004)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Hübner, B., Walhorn, E., Dinkler, D.: A monolithic approach to fluid-structure interaction using space–time finite elements. Comput. Method. Appl. Mech. Eng. 193, 2087–2104 (2004)CrossRefMATHGoogle Scholar
  12. 12.
    Ishihara, D., Yoshimura, S.: A monolithic approach for interaction of incompressible viscous fluid and an elastic body based on fluid pressure poisson equation. Int. J. Numer. Method. Eng. 64, 167–203 (2005)CrossRefMATHGoogle Scholar
  13. 13.
    Bathe, K.-J., Zhang, H.: Finite element developments for general fluid flows with structural interactions. Int. J. Numer. Method. Eng. 60, 213–232 (2004)CrossRefMATHGoogle Scholar
  14. 14.
    Longatte, E., Verreman, V., Souli, M.: Time marching for simulation of fluid–structure interaction problems. J. Fluids Struct. 25, 95–111 (2009)CrossRefGoogle Scholar
  15. 15.
    Fernández, M.A., Gerbeau, J.-F., Grandmont, C.: A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid. Int. J. Numer. Method. Eng. 69, 794–821 (2007)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Förster, C., Wall, W.A., Ramm, E.: Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows. Comput. Method. Appl. Mech. Eng. 196, 1278–1293 (2007)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Küttler, U., Wall, W.A.: Fixed-point fluid–structure interaction solvers with dynamic relaxation. Comput. Mech. 43, 61–72 (2008)CrossRefMATHGoogle Scholar
  18. 18.
    Badia, S., Nobile, F., Vergara, C.: Fluid–structure partitioned procedures based on robin transmission conditions. J. Comput. Phys. 227, 7027–7051 (2008)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Young, Y.L., Chae, E.J., Akcabay, D.T.: Hybrid algorithm for modeling of fluid–structure interaction in incompressible viscous flows. Acta Mech. Sin. 28, 1030–1041 (2012)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Degroote, J., Bruggeman, P., Haelterman, R., et al.: Stability of a coupling technique for partitioned solvers in FSI applications. Comput. Struct. 86, 2224–2234 (2008)CrossRefGoogle Scholar
  21. 21.
    van Brummelen, E.H.: Added mass effects of compressible and incompressible flows in fluid–structure interaction. J. Appl. Mech. 76, 021206 (2009)CrossRefGoogle Scholar
  22. 22.
    Vierendeels, J., Dumont, K., Dick, E., et al.: Analysis and stabilization of fluid–structure interaction algorithm for rigid-body motion. AIAA J. 43, 2549–2557 (2005)CrossRefGoogle Scholar
  23. 23.
    Causin, P., Gerbeau, J.F., Nobile, F.: Added-mass effect in the design of partitioned algorithms for fluid–structure problems. Comput. Method. Appl. Mech. Eng. 194, 4506–4527 (2005)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Belanger, F., Païdoussis, M.P., de Langre, E.: Time-marching analysis of fluid-coupled systems with large added mass. AIAA J. 33, 752–757 (1995)CrossRefGoogle Scholar
  25. 25.
    Idelsohn, S.R., Del Pin, F., Rossi, R., et al.: Fluid–structure interaction problems with strong added-mass effect. Int. J. Numer. Method. Eng. 80, 1261–1294 (2009)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Douglas Jr., J., Dupont, T.: Alternating-Direction Galerkin Methods on Rectangles, Numerical Solution of Partial Differential Equations, II (SYNSPADE 1970). Academic Press, New York (1971)Google Scholar
  27. 27.
    Smereka, P.: Semi-implicit level set methods for curvature and surface diffusion motion. J. Sci. Comput. 19, 439–456 (2003)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Xu, J.-J., Zhao, H.-K.: An Eulerian formulation for solving partial differential equations along a moving interface. J. Sci. Comput. 19, 573–594 (2003)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Ceniceros, H.D., Hou, T.Y.: An efficient dynamically adaptive mesh for potentially singular solutions. J. Comput. Phys. 172, 609–639 (2001)CrossRefMATHGoogle Scholar
  30. 30.
    Baek, H., Karniadakis, G.E.: A convergence study of a new partitioned fluid–structure interaction algorithm based on fictitious mass and damping. J. Comput. Phys. 231, 629–652 (2012)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Connell, B.S.H., Yue, D.K.P.: Flapping dynamics of a flag in a uniform stream. J. Fluid Mech. 581, 33–67 (2007)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Chae, E.J., Akcabay, D.T., Young, Y.L.: Dynamic response and stability of a flapping foil in a dense viscous fluid. Phys. Fluids 25, 104106 (2013)CrossRefGoogle Scholar
  33. 33.
    Akcabay, D.T., Ducoin, A., Chae, E.J., et al.: Transient hydroelastic response of a flexible hydrofoil in subcavitating and cavitating flows. In: 29th Symposium on Naval Hydrodynamics. Gothenburg, Sweden (2012)Google Scholar
  34. 34.
    Akcabay, D.T., Young, Y.L.: Influence of cavitation on the hydroelastic stability of hydrofoils. J. Fluids Struct. 49, 170–185 (2014)CrossRefGoogle Scholar
  35. 35.
    Akcabay, D.T., Chae, E.J., Young, Y.L., et al.: Cavity induced vibration of flexible hydrofoils. J. Fluids Struct. 49, 463–484 (2014)CrossRefGoogle Scholar
  36. 36.
    Akcabay, D.T., Young, Y.L.: Parametric excitations and lock-in of flexible hydrofoils in two-phase flows. J. Fluids Struct. 57, 344–356 (2015)CrossRefGoogle Scholar
  37. 37.
    Kring, D.C.: Time domain ship motions by a three-dimensional Rankine panel method, [Ph.D. Thesis], Massachusetts Institute of Technology, USA (1994)Google Scholar
  38. 38.
    Theodorsen, T.: General theory of aerodynamic instability and the mechanism of flutter. National Advisory Committee for Aeronautics Report, No. 496 (1935)Google Scholar
  39. 39.
    Fung, Y.C.: An Introduction to the Theory of Aeroelasticity. Dover Publications, New York (1993)Google Scholar
  40. 40.
    Münch, C., Ausoni, P., Braun, O., et al.: Fluid–structure coupling for an oscillating hydrofoil. J. Fluids Struct. 26, 1018–1033 (2010)CrossRefGoogle Scholar
  41. 41.
    Roth, S., Calmon, M., Farhat, M., et al.: Hydrodynamic damping identification from an impulse response of a vibrating blade. In: Proceedings of the \(3^{\rm rd}\) IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, Brno, Czech Republic (2009)Google Scholar
  42. 42.
    ANSYS: ANSYS CFX-Solver Modeling guide. Release 14.0. ANSYS Inc., Canonsburg (2011)Google Scholar
  43. 43.
    Brennen, C.E.: A review of added mass and fluid inertial forces, Report No. CR 82.010, Department of the Navy, Naval Civil Engineering Laboratory. Port Hueneme, CA, USA (1982)Google Scholar
  44. 44.
    Young, Y.L., Motley, M.R., Barber, R., et al.: Adaptive composite marine propulsors and turbines: progress and challenges. Appl. Mech. Rev. 68, 062001 (2016)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Deniz Tolga Akcabay
    • 1
  • Jian Xiao
    • 1
  • Yin Lu Young
    • 1
  1. 1.Department of Naval Architecture and Marine EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations