Acta Mechanica Sinica

, Volume 33, Issue 4, pp 725–732 | Cite as

Forces and energetics of intermittent swimming

  • Daniel Floryan
  • Tyler Van Buren
  • Alexander J. Smits
Research Paper

Abstract

Experiments are reported on intermittent swimming motions. Water tunnel experiments on a nominally two-dimensional pitching foil show that the mean thrust and power scale linearly with the duty cycle, from a value of 0.2 all the way up to continuous motions, indicating that individual bursts of activity in intermittent motions are independent of each other. This conclusion is corroborated by particle image velocimetry (PIV) flow visualizations, which show that the main vortical structures in the wake do not change with duty cycle. The experimental data also demonstrate that intermittent motions are generally energetically advantageous over continuous motions. When metabolic energy losses are taken into account, this conclusion is maintained for metabolic power fractions less than 1.

Keywords

Unsteady propulsion Burst and coast Bio-inspired 

References

  1. 1.
    Gleiss, A.C., Jorgensen, S.J., Liebsch, N., et al.: Convergent evolution in locomotory patterns of flying and swimming animals. Nat. Commun. 2, 352 (2011)CrossRefGoogle Scholar
  2. 2.
    Fish, F.E., Fegely, J.F., Xanthopoulos, C.J.: Burst-and-coast swimming in schooling fish (notemigonus crysoleucas) with implications for energy economy. Comp. Biochem. Physiol. A: Physiol. 100(3), 633–637 (1991)CrossRefGoogle Scholar
  3. 3.
    Kramer, D.L., McLaughlin, R.L.: The behavioral ecology of intermittent locomotion 1. Am. Zool. 41(2), 137–153 (2001)Google Scholar
  4. 4.
    Weihs, D.: Energetic advantages of burst swimming of fish. J. Theor. Biol. 48(1), 215–229 (1974)CrossRefGoogle Scholar
  5. 5.
    Videler, J.J., Weihs, D.: Energetic advantages of burst-and-coast swimming of fish at high speeds. J. Exp. Biol. 97(1), 169–178 (1982)Google Scholar
  6. 6.
    Lighthill, M.J.: Large-amplitude elongated-body theory of fish locomotion. Proc. R. Soc. Lond. B: Biol. Sci. 179(1055), 125–138 (1971)CrossRefGoogle Scholar
  7. 7.
    Webb, P.W.: Hydrodynamics and energetics of fish propulsion. Fisheries Research Board of Canada, Department of the Environment Fisheries and Marine Service, 190, 158 (1975)Google Scholar
  8. 8.
    Anderson, E.J., Mcgillis, W.R., Grosenbaugh, M.A.: The boundary layer of swimming fish. J. Exp. Biol. 204(1), 81–102 (2001)Google Scholar
  9. 9.
    Blake, R.W.: Functional design and burst-and-coast swimming in fishes. Can. J. Zool. 61(11), 2491–2494 (1983)CrossRefGoogle Scholar
  10. 10.
    Chung, M.H.: On burst-and-coast swimming performance in fish-like locomotion. Bioinspir. Biomim. 4(3), 036001 (2009)CrossRefGoogle Scholar
  11. 11.
    Wu, G., Yang, Y., Zeng, L.: Kinematics, hydrodynamics and energetic advantages of burst-and-coast swimming of koi carps (cyprinus carpio koi). J. Exp. Biol. 210(12), 2181–2191 (2007)CrossRefGoogle Scholar
  12. 12.
    Floryan, D., Van Buren, T., Rowley, C.W., et al.: Scaling the propulsive performance of heaving and pitching foils. J. Fluid Mech. arXiv:1704.07478 (2017)
  13. 13.
    Sciacchitano, A., Wieneke, B., Scarano, F.: PIV uncertainty quantification by image matching. Meas. Sci. Technol. 24(4), 045302 (2013)CrossRefGoogle Scholar
  14. 14.
    Akoz, E., Moored, K.W.: Unsteady propulsion by an intermittent swimming gait. ArXiv:1703.06185 (2017)
  15. 15.
    Van Buren, T., Floryan, D., Quinn, D., et al.: Nonsinusoidal gaits for unsteady propulsion. Phys. Rev. Fluids 2, 053101 (2017)CrossRefGoogle Scholar
  16. 16.
    White, F.M.: Fluid Mechanics, 7 edn. McGraw Hill, New York (2011)Google Scholar
  17. 17.
    Dormand, J.R., Prince, P.J.: A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 6(1), 19–26 (1980)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Shampine, L.F., Reichelt, M.W.: The MATLAB ODE suite. SIAM J. Sci. Comput. 18(1), 1–22 (1997)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Barrett, D.S., Triantafyllou, M.S., Yue, D.K.P., et al.: Drag reduction in fish-like locomotion. J. Fluid Mech. 392, 183–212 (1999)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Daniel Floryan
    • 1
  • Tyler Van Buren
    • 1
  • Alexander J. Smits
    • 1
  1. 1.Department of Mechanical and Aerospace EngineeringPrinceton UniversityPrincetonUSA

Personalised recommendations