Acta Mechanica Sinica

, Volume 33, Issue 4, pp 685–708 | Cite as

Dynamics of cavitation–structure interaction

Review Paper

Abstract

Cavitation–structure interaction has become one of the major issues for most engineering applications. The present work reviews recent progress made toward developing experimental and numerical investigation for unsteady turbulent cavitating flow and cavitation–structure interaction. The goal of our overall efforts is to (1) summarize the progress made in the experimental and numerical modeling and approaches for unsteady cavitating flow and cavitation–structure interaction, (2) discuss the global multiphase structures for different cavitation regimes, with special emphasis on the unsteady development of cloud cavitation and corresponding cavitating flow-induced vibrations, with a high-speed visualization system and a structural vibration measurement system, as well as a simultaneous sampling system, (3) improve the understanding of the hydroelastic response in cavitating flows via combined physical and numerical analysis, with particular emphasis on the interaction between unsteady cavitation development and structural deformations. Issues including unsteady cavitating flow structures and cavitation–structure interaction mechanism are discussed.

Keywords

Cavitation–structure interaction Unsteady cavitating flows Cavitating flow-induced vibration Hydroelastic response 

List of symbols

\(\sigma \)

Local cavitation number

\(C_{\mathrm{dest}}\), \(C_{\mathrm{prod}}\)

Constant rate for vaporization and condensation

\(C_{h}\)

Bending damping coefficient

\(C_{\theta }\)

Torsional damping coefficient

\(C_\mathrm{l}\)

Lift coefficient

\(C_\mathrm{d}\)

Drag coefficient

\(C_\mathrm{m}\)

Moment coefficient

c

Chord length of hydrofoil

Cp

Pressure coefficient

D

Drag

f

Frequency

h

Bending deformation

\(I_{\theta }\)

Moment of inertia

\(K_{h}\), \(K_{\theta }\)

Structural stiffness values for bending and twisting motion

k

Turbulent kinetic energy

L

Cavity length

\(L_{\mathrm{ref}}\)

Reference length

\(L_{f}\)

Lift

M

Moment

m

mass of structure

\(m^{+}\), \(m^{-}\)

Source and sink terms in the cavitation model

p

Pressure

\(p_{\infty }\)

Reference static pressure

R

Bubble diameter

Re

Reynolds number

\(S_{\theta }\)

Static imbalance

Fr

Froude number

s

Span of hydrofoil

t

Local time

\(t_{\infty }\)

Reference time scale, \(t_{\infty }=L/U_{\infty }\)

\(T_{\mathrm{ref}}\)

Reference periodic time

\(U_{\infty }\)

Reference velocity

\(V_{\mathrm{v},n}\)

Normal component of the vapor velocity moving away from the interface

\(V_{\mathrm{I},n}\)

Normal interfacial velocity

\(\omega z\)

z-component of the vorticity

x

Space variable

\(\delta {y}\)

Maximum of vibration amplitude

\(\alpha \)

Angle of attack

\(\alpha _{\mathrm{l}}\)

Liquid volume fraction

\(\alpha _{\mathrm{v}}\)

Vapor mass fraction

\(\rho \)

Density

\(\theta \)

Twist deformation

\(\mu \)

Dynamic viscosity

\(\mu _T /\mu _{\mathrm{L}_{|{\mathrm{inlet}}}} \)

Eddy-to-laminar viscosity ratio at the inlet

\(\varepsilon \)

Turbulent dissipation rate

\(\lambda \)

Filter size in filter-based model

Subscript

i, j

Component

l

Liquid

v

Vapor

L

Laminar

m

Mixture property

T

Turbulent

References

  1. 1.
    Brennen, C.E.: Cavitation and Bubble Dynamics. Oxford Engineering and Sciences Series, vol. 44. Oxford University Press, Oxford (1995)Google Scholar
  2. 2.
    Knapp, R.T., Daily, J.W., Hammitt, F.G.: Cavitation. McGraw Hill, New York (1970)Google Scholar
  3. 3.
    Ji, B., Wang, J., Luo, X., et al.: Numerical simulation of cavitation surge and vortical flows in a diffuser with swirling flow. J. Mech. Sci. Technol. 30, 2507–2514 (2016)CrossRefGoogle Scholar
  4. 4.
    Wang, Y., Wu, X., Huang, C., et al.: Unsteady characteristics of cloud cavitating flow near the free surface around an axisymmetric projectile. Int. J. Multiph. Flow 85, 48–56 (2016)CrossRefGoogle Scholar
  5. 5.
    Chen, Y., Chen, X., Li, J., et al.: Large Eddy Simulation and investigation on the flow structure of the cascading cavitation shedding regime around 3D twisted hydrofoil. Ocean Eng. 129, 1–19 (2017)CrossRefGoogle Scholar
  6. 6.
    Rood, E.P.: Review-mechanisms of cavitation inception. J. Fluids Eng. 113, 163–175 (1991)CrossRefGoogle Scholar
  7. 7.
    Kawanami, Y., Kato, H., Yamauchi, H., et al.: Mechanism and control of cloud cavitations. ASME J. Fluids Eng. 119, 788–794 (1997)CrossRefGoogle Scholar
  8. 8.
    Laberteaux, K.R., Ceccio, S.L.: Partial cavity flows. Part 1: Cavities forming on models without spanwise variation. ASME J. Fluid Mech. 431, 1–41 (2002)MATHGoogle Scholar
  9. 9.
    Delange, D.F., Debruin, G.J.: Sheet cavitation and cloud cavitation, re-entrant jet and three-dimensionality. Appl. Sci. Res. 58, 91–114 (1997)CrossRefGoogle Scholar
  10. 10.
    Kubota, A., Kato, H., Yamaguchi, H., et al.: Unsteady structure measurement of cloud cavitation on a foil section using conditional sampling technique. ASME J. Fluids Eng. 111, 204–210 (1989)CrossRefGoogle Scholar
  11. 11.
    Callenaere, M., Franc, J.P., Michel, J.M., et al.: The cavitation instability induced by the development of a re-entrant jet. ASME J. Fluid Mech. 444, 233–256 (2001)MATHGoogle Scholar
  12. 12.
    Kawakami, D.T., Fuji, A., Tsujimoto, Y., et al.: An assessment of the influence of cavitation instabilities. J. Fluids Eng. 130, 1–8 (2008)CrossRefGoogle Scholar
  13. 13.
    Li, C.Y., Ceccio, S.L.: Interaction of single travelling bubbles with the boundary layer and attached cavitation. J. Fluid Mech. 322, 329–353 (1996)CrossRefGoogle Scholar
  14. 14.
    Arndt, R.E.A., Song, C.C.S.: Instability of partial cavitation: a numerical/experimental approach. In: Proceedings of Twenty-Third Symposium on Naval Hydrodynamics, Valde Reuil, France (2000)Google Scholar
  15. 15.
    Li, X., Wang, G., Yu, Z., et al.: Multiphase fluid dynamics and transport processes of low capillary number cavitating flows. Acta. Mech. Sin. 25, 161–172 (2009)CrossRefMATHGoogle Scholar
  16. 16.
    Ausoni, P., Farhat, M., Escaler, X., et al.: Cavitation influence on von Karman vortex shedding and induced hydrofoil vibrations. ASME J. Fluid Eng. 129, 966–973 (2007)CrossRefGoogle Scholar
  17. 17.
    Gopalan, S., Katz, J.: Flow structure and modeling issues in the closure region of attached cavitation. Phys. Fluids 12, 895–911 (2000)CrossRefMATHGoogle Scholar
  18. 18.
    Dang, J., Kuiper, G.: Re-entrant jet modeling of partial cavity flow on three dimensional hydrofoils. ASME J. Fluids Eng. 121, 781–787 (1999)CrossRefGoogle Scholar
  19. 19.
    Dang, J.: Numerical simulation of unsteady partial cavity flows. [Ph.D. Thesis], Technical University of Delft, Netherlands (2000)Google Scholar
  20. 20.
    Foeth, E.J.: The structure of three-dimensional sheet cavitation. [Ph.D. Thesis], Delft University of Technology, Delft, Netherlands (2008)Google Scholar
  21. 21.
    Foeth, E.J., Van Terwisga, T., Van Doone, C.: On the collapse structure of an attached cavity on a three-dimensional hydrofoil. ASME J. Fluids Eng. 130, 071303 (2008)CrossRefGoogle Scholar
  22. 22.
    Tseng, C., Shyy, W.: Modeling for isothermal and cryogenic cavitation. Int. J. Heat Mass Trans. 53, 513–525 (2010)CrossRefMATHGoogle Scholar
  23. 23.
    Leroux, J.-B., Astolfi, J.A., Billard, J.Y.: An experimental study of unsteady partial cavitation. J. Fluids Eng. 126, 94–101 (2004)CrossRefGoogle Scholar
  24. 24.
    Peng, X.X., Ji, B., Cao, Y.T., et al.: Combined experimental observation and numerical simulation of the cloud cavitation with U-type flow structures on hydrofoils. Int. J. Multiph. Flow 79, 10–22 (2016)CrossRefGoogle Scholar
  25. 25.
    Senocak, I., Shyy, W.: Evaluation of cavitation models for Navier–Stokes computations. In: Proceedings of FEDSM’02, ASME 2002 Fluids Engineering Division Summer Meeting Montreal, Quebec, Canada (2002)Google Scholar
  26. 26.
    Senocak, I., Shyy, W.: Interfacial dynamics-based modeling of turbulent cavitating flows. Part-1: Model development and steady-state computations. Int. J. Numer. Methods Fluids 44, 975–995 (2004)CrossRefMATHGoogle Scholar
  27. 27.
    Senocak, I., Shyy, W.: Interfacial dynamics-based modeling of turbulent cavitating flows. Part-2: Time-dependent computations. Int. J. Numer. Methods Fluids 44, 997–1016 (2004)CrossRefMATHGoogle Scholar
  28. 28.
    Kim, S., Brewton, S.: A multiphase approach to turbulent cavitating flows. In: Proceedings of 27th Symposium on Naval Hydrodynamics, Seoul, Korea (2008)Google Scholar
  29. 29.
    Zhao, Y., Wang, G., Huang, B.: A cavitation model for computations of unsteady cavitating flows. Acta. Mech. Sin. 32, 1–11 (2016)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Hu, C., Wang, G., Chen, G., et al.: A modified PANS model for computations of unsteady turbulence for cavitating flows. Sci. China Phys. Mech. Astron. 57, 1967–1976 (2014)CrossRefGoogle Scholar
  31. 31.
    Chen, Y., Heister, S.D.: Modeling hydrodynamic non-equilibrium in cavitating flows. ASME J. Fluids Eng. 118, 172–178 (1996)CrossRefGoogle Scholar
  32. 32.
    Kubota, A., Kato, H., Yamaguchi, H.: A new modeling of cavitating flows: a numerical study of unsteady cavitation on a hydrofoil section. ASME J. Fluid Mech. 240, 59–96 (1992)CrossRefGoogle Scholar
  33. 33.
    Kunz, R.F., Boger, D.A., Stinebring, D.R., et al.: A preconditioned Navier–Stokes method for two phase flows with application to cavitation prediction. Comput. Fluids 29, 849–875 (2000)CrossRefMATHGoogle Scholar
  34. 34.
    Singhal, A.K., Athavale, M.M., Li, H., et al.: Mathematical basis and validation of the full cavitation model. ASME J. Fluids Eng. 124, 617–624 (2002)CrossRefGoogle Scholar
  35. 35.
    Delannoy, Y., Kueny, J.L.: Two phase flow approach in unsteady cavitation modeling. In: Proceedings of the Spring Meeting of the Fluids Engineering Division, 153–158 (1990)Google Scholar
  36. 36.
    Wang, G., Ostoja-Starzewski, M.: Large eddy simulation of a sheet/cloud cavitation on a NACA0015 hydrofoil. Appl. Math. Model. 31, 417–447 (2007)CrossRefMATHGoogle Scholar
  37. 37.
    Merkle, C.L., Feng, J., Buelow, P.E.O.: Computational modeling of sheet cavitations. In: Proceedings of Third International Symposium on Cavitation, Grenoble, France (1998)Google Scholar
  38. 38.
    Coutier-Delgosha, O., Fortes-Patella, R., Reboud, J.L.: Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitations. ASME J. Fluids Eng. 125, 38–45 (2003)CrossRefGoogle Scholar
  39. 39.
    Kinzel, M.P., Lindau, J.W., Peltier, L.J., et al.: Detached-eddy simulations for cavitating flows. AIAA, 2007-4098 (2007)Google Scholar
  40. 40.
    Wu, J., Wang, G., Shyy, W.: Time-dependent turbulent cavitating flow computations with interfacial transport and filter based models. Int. J. Numer. Methods Fluids 49, 739–761 (2005)CrossRefMATHGoogle Scholar
  41. 41.
    Reboud, J.L., Stutz, B., Coutier-Delgosha, O.: Two phase flow structure of cavitation: experiment and modeling of unsteady effects. In: Proceedings of the Third Symposium on Cavitation, Grenoble, France (1998)Google Scholar
  42. 42.
    Huang, B., Wang, G., Yu, Z., et al.: Detached-eddy simulation for time-dependent turbulent cavitating flows. Chin. J. Mech. Eng. 25, 484–490 (2012)CrossRefGoogle Scholar
  43. 43.
    Johansen, S.T., Wu, J., Shyy, W.: Filter-based unsteady RANS computations. Int. J. Heat Fluid Flow 25, 10–21 (2004)CrossRefGoogle Scholar
  44. 44.
    Song, M.T., Xu, L.H., Peng, X.X., et al.: An acoustic approach to determine tip vortex cavitation inception for an elliptical hydrofoil considering nuclei-seeding. Int. J. Multiph. Flow 90, 79–87 (2017)CrossRefGoogle Scholar
  45. 45.
    Arndt, R.E.A., Pennings, P., Bosschers, J., et al.: The singing vortex. Interface Focus 5, 1–11 (2015)CrossRefGoogle Scholar
  46. 46.
    Wang, Y.W., Liao, L.J., Du, T.Z., et al.: A study on the collapse of cavitation bubble surrounding the underwater-launched projectile and its fluid–structure coupling effects. Ocean Eng. 84, 228–236 (2014)CrossRefGoogle Scholar
  47. 47.
    Chae, E.J.: Dynamic Response and Stability of Flexible Hydrofoils in Incompressible and Viscous Flow. [Ph.D. Thesis], University of Michigan, Ann Arbor, America (2015)Google Scholar
  48. 48.
    Luo, X., Ji, B., Tsujimoto, Y.: A review of cavitation in hydraulic machinery. J. Hydrodyn. Ser. B 28, 335–358 (2016)CrossRefGoogle Scholar
  49. 49.
    Zobeiri, A., Ausoni, P., Avellan, F., et al.: How oblique trailing edge of a hydrofoil reduces the vortex-induced vibration. J. Fluids Struct. 32, 78–89 (2012)CrossRefGoogle Scholar
  50. 50.
    Ji, B., Luo, X.W., Arndt, R.E.A., et al.: Numerical simulation of three dimensional cavitation shedding dynamics with special emphasis on cavitation–vortex interaction. Ocean Eng. 87, 64–77 (2014)CrossRefGoogle Scholar
  51. 51.
    Chen, G., Wang, G., Hu, C., et al.: Combined experimental and computational investigation of cavitation evolution and excited pressure fluctuation in a convergent–divergent channel. Int. J. Multiph. Flow 72, 133–140 (2015)CrossRefGoogle Scholar
  52. 52.
    De La Torre, O., Escaler, X., Egusquiza, E., et al.: Experimental investigation of added mass effects on a hydrofoil under cavitation conditions. J. Fluids Struct. 39, 173–187 (2013)CrossRefGoogle Scholar
  53. 53.
    Amromin, E., Kovinskaya, S.: Vibration of cavitating elastic wing in a periodically perturbed flow: excitation of subharmonics. J. Fluids Struct. 14, 735–751 (2000)CrossRefGoogle Scholar
  54. 54.
    Kamakoti, R., Shyy, W.: Fluid–structure interaction for aeroelastic applications. Prog. Aerosp. Sci. 40, 535–558 (2004)CrossRefMATHGoogle Scholar
  55. 55.
    Benaouicha, M., Astolfi, J.A., Ducoin, A.: A Numerical study of cavitation induced vibration. In: Proceedings of the ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference. Bellevue, Washington, USA, 1–8 (2010)Google Scholar
  56. 56.
    Ryzhakov, P.B., Rossi, R., Idelsohn, S.R., et al.: A monolithic Lagrangian approach for fluid–structure interaction problems. Comput. Mech. 46, 883–899 (2010)MathSciNetCrossRefMATHGoogle Scholar
  57. 57.
    Farhat, C., vander Zee, K., Geuzaine, Ph: Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear aeroelasticity. Comput. Methods Appl. Mech. Eng. 195, 1973–2001 (2006)MathSciNetCrossRefMATHGoogle Scholar
  58. 58.
    Campbell, R.L., Paterson, E.G.: Fluid–structure interaction analysis of flexible turbomachinery. J. Fluids Struct. 27, 1376–1391 (2011)CrossRefGoogle Scholar
  59. 59.
    Michler, C., Hulshoff, S.J., van Brummelen, E.H., et al.: A monolithic approach to fluid–structure interaction. Comput. Fluids 33, 839–848 (2004)CrossRefMATHGoogle Scholar
  60. 60.
    Causin, P., Gerbeau, J.F., Nobile, F.: Added-mass effect in the design of partitioned algorithms for fluid–structure problems. Comput. Methods Appl. Mech. Eng. 194, 4506–4527 (2005)MathSciNetCrossRefMATHGoogle Scholar
  61. 61.
    Young, Y.L., Chae, E.J., Akcabay, D.T.: Hybrid algorithm for modeling of fluid–structure interaction in incompressible viscous flows. Acta Mech. Sin. 28, 1030–1041 (2012)MathSciNetCrossRefMATHGoogle Scholar
  62. 62.
    Matthies, H.G., Steindorf, H.: Partitioned strong coupling algorithms for fluid–structure interaction. Comput. Struct. 81, 805–812 (2003)CrossRefGoogle Scholar
  63. 63.
    Belanger, F., Paidoussis, M.P., Langre, E.: Time-marching analysis of fluid-coupled systems with large added mass. AIAA J. 33, 752–757 (1995)CrossRefGoogle Scholar
  64. 64.
    Forster, C., Wall, W.A., Ramm, E.: Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 196, 1278–1293 (2007)MathSciNetCrossRefMATHGoogle Scholar
  65. 65.
    Grekula, M., Bark, G.: Experimental study of cavitation in a Kaplan model turbine. In: Proceedings of 4th International Symposium on Cavitation, Pasadena, Ca, USA (2001)Google Scholar
  66. 66.
    Sato, K., Shimojo, S.: Detailed observations on a starting mechanism for shedding of cavitation cloud. In: Proceedings of 5th International Symposium on Cavitations, Japan (2003)Google Scholar
  67. 67.
    Amromin, E.: Development and validation of CFD models for initial stages of cavitation. J. Fluids Eng. 136, 1–33 (2014)CrossRefGoogle Scholar
  68. 68.
    Arakeri, V.H., Acosta, A.J.: Viscous effects in the inception of cavitation on axisymmetric bodies. ASME J. Fluid Eng. 95, 519–527 (1973)CrossRefGoogle Scholar
  69. 69.
    Foeth, E.J., Van Doorne, C.W.H., Van Terwisga, T., et al.: Time resolved PIV and flow visualization of 3D sheet cavitation. Exp. Fluids 40, 503–513 (2006)CrossRefGoogle Scholar
  70. 70.
    Stutz, B., Reboud, J.L.: Two-phase flow structure of sheet cavitations. Phys. Fluids 9, 3678–3686 (1997)MathSciNetCrossRefMATHGoogle Scholar
  71. 71.
    Ji, B., Luo, X., Wu, Y., et al.: Partially-averaged Navier–Stokes method with modified k-e model for cavitating flow around a marine propeller in a non-uniform wake. Int. J. Heat Mass Transf. 55, 6582–6588 (2012)CrossRefGoogle Scholar
  72. 72.
    Stutz, B., Reboud, J.L.: Experiments on unsteady cavitation. Exp. Fluids 22, 191–198 (1997)CrossRefMATHGoogle Scholar
  73. 73.
    Li, X., Wang, G., Zhang, M., et al.: Structures of supercavitating multiphase flows. Int. J. Therm. Sci. 47, 1263–1275 (2008)CrossRefGoogle Scholar
  74. 74.
    Long, X., Zhang, J., Wang, Q., et al.: Experimental investigation on the performance of jet pump cavitation reactor at different area ratios. Exp. Therm. Fluid Sci. 78, 309–321 (2016)CrossRefGoogle Scholar
  75. 75.
    Fukaya, M., Ono, S., Udo, R.: Prediction of cavitation intensity in pumps based on propagation analysis of bubble collapse pressure using multi-point vibration acceleration method. Int. J. Fluid Mach. Syst. 2, 165–171 (2009)CrossRefGoogle Scholar
  76. 76.
    Ducoin, A., Astolfi, J.A., Gobert, M.-L.: An experimental study of boundary-layer transition induced vibrations on a hydrofoil. J. Fluids Struct. 32, 37–51 (2012)CrossRefGoogle Scholar
  77. 77.
    Wu, Q., Huang, B., Wang, G.: Experimental and numerical investigation of hydroelastic response of a flexible hydrofoil in cavitating flow. Int. J. Multiph. Flow 74, 19–33 (2015)CrossRefGoogle Scholar
  78. 78.
    Leroux, J.B., Coutier-Delgosha, O., Astolfi, J.A.: A joint experimental and numerical study of mechanisms associated to instability of partial cavitation on two-dimensional hydrofoil. Phys. Fluids 17, 1–20 (2005)CrossRefMATHGoogle Scholar
  79. 79.
    Akcabay, D.T., Chae, E.J., Young, Y.L., et al.: Cavity induced vibration of flexible hydrofoils. J. Fluids Struct. 49, 463–484 (2014)CrossRefGoogle Scholar
  80. 80.
    Zhang, B.: Physical and numerical investigation of unsteady cavitating flow mechanism and hydrodynamic characteristics. [Ph.D. Thesis], Beijing Institute of Technology, China (2009)Google Scholar
  81. 81.
    Luo, X.W., Ji, B., Zhang, Y., et al.: Cavitating flow over a mini hydrofoil. Chin. Phys. Lett. 29, 016401 (2012)CrossRefGoogle Scholar
  82. 82.
    Dular, M., Khlifa, I., Fuzier, S., et al.: Scale effect on unsteady cloud cavitation. Exp. Fluids 53, 1233–1250 (2012)CrossRefGoogle Scholar
  83. 83.
    Wang, G., Liu, S., Shintani, M., et al.: Study on cavitation damage characteristics around a hollow-jet valve. JSME Int. J. Ser. B 42, 649–658 (1999)CrossRefGoogle Scholar
  84. 84.
    Wang, G.Y., Senocak, I., Shyy, W., et al.: Dynamics of attached turbulent cavitating flows. Prog. Aerosp. Sci. 37, 551–581 (2001)CrossRefGoogle Scholar
  85. 85.
    Kim, D.J., Sung, H.J., Choi, C.H., et al.: Cavitation instabilities of an inducer in a cryogenic pump. Acta Astronaut. 132, 19–24 (2017)CrossRefGoogle Scholar
  86. 86.
    Ji, B., Luo, X.W., Wu, Y.L., et al.: Numerical and experimental study on unsteady shedding of partial cavitation. Mod. Phys. Lett. B 24, 1441–1444 (2010)CrossRefMATHGoogle Scholar
  87. 87.
    Huang, B., Wang, G.: Experimental and numerical investigation of unsteady cavitating flows through a 2D hydrofoil. Sci. China Tech. Sci. 54, 1801–1812 (2011)CrossRefMATHGoogle Scholar
  88. 88.
    Peng, X.X., Ji, B., Cao, Y., et al.: Combined experimental observation and numerical simulation of the cloud cavitation with U-type flow structures on hydrofoils. Int. J. Multiph. Flow 79, 10–22 (2016)CrossRefGoogle Scholar
  89. 89.
    Wu, Q., Wang, G.Y., Huang, B., et al.: Experimental investigation of the flow-induced vibration of hydrofoils in cavitating flows. J. Phys. Conf. Ser. 656, 012105 (2015)CrossRefGoogle Scholar
  90. 90.
    Huang, B., Young, Y.L., Wang, G.Y., et al.: Combined experimental and computational investigation of unsteady structure of sheet/cloud cavitation. J. Fluids Eng. 135, 071301 (2013)CrossRefGoogle Scholar
  91. 91.
    Kato, H., Konno, A., Maeda, M., et al.: Possibility of quantitative prediction of cavitation erosion without model test. ASME J. Fluids Eng. 118, 582–588 (1996)CrossRefGoogle Scholar
  92. 92.
    Kirschner, I.N., Fine, N.E., Uhlman, J.S., et al.: Numerical modeling of supercavitating flows. Technical report. DTIC (2001)Google Scholar
  93. 93.
    Semenenko, V.N.: Artificial supercavitation: physics and calculation. RTO AVT/VKI special course: supercavitating flows, von Karman Institute for Fluid Dynamics, Rhode-Saint-Genese, Belgium, 12–16 (2001)Google Scholar
  94. 94.
    Shen, Y., Dimotakis, P.: The influence of surface cavitation on hydrodynamic forces. In: Proceedings of 22nd ATTC, St. Johns, 44–53 (1989)Google Scholar
  95. 95.
    Ducoin, A., Huang, B., Young, Y. L.: Y.L.: Numerical modeling of unsteady cavitating flows around a stationary hydrofoil. Int. J. Rotating Mach. Mach. 2012, 215678, 1–17 (2012)Google Scholar
  96. 96.
    Luo, X.W., Ji, B., Peng, X.X., et al.: Numerical simulation of cavity shedding from a three-dimensional twisted hydrofoil and induced pressure fluctuation by large-eddy simulation. ASME J. Fluids Eng. Trans. 134, 041202 (2012)CrossRefGoogle Scholar
  97. 97.
    Zwart, P., Gerber, A., Belamri, T.: A two-phase flow model for predicting cavitation dynamics. In: Fifth International Conference on Multiphase Flow, Yokohama, Japan (2004)Google Scholar
  98. 98.
    Ducoin, A., Huang, B., Young, Y.L.: Numerical modeling of unsteady cavitating flows around a stationary hydrofoil. Int. J. Rotating Mach. Article 2012, (2012)Google Scholar
  99. 99.
    Huang, B.,Ducoin, A.,Young,Y.L.:Evaluation of cavitation models for prediction of transient cavitating flows around a pitching hydrofoil. In: Proceedings of 8th International Symposium on Cavitation, Singapore (2012)Google Scholar
  100. 100.
    Launder, B.E., Spalding, D.B.: The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 3, 269–289 (1974)CrossRefMATHGoogle Scholar
  101. 101.
    Cho, Y.C., Du, W., Gupta, A., et al.: Surrogate-based modeling and dimension-reduction techniques for thermo-fluid and energy systems. In: Proceeding of the ASME/JSME 2011 8th Thermal Engineering Joint Conference, Honolulu, Hawaii, USA, March 13–17 (2011)Google Scholar
  102. 102.
    Hu, C., Wang, G., Chen, G., et al.: Surrogate model-based optimization for the headform design of an axisymmetric body. Ocean Eng. 107, 237–245 (2015)CrossRefGoogle Scholar
  103. 103.
    Shyy, W., Cho, Y.-C., Du, W., et al.: Surrogate-based modeling and dimension reduction techniques for multi-scale mechanics problems. Acta. Mech. Sin. 27, 845–865 (2011)CrossRefMATHGoogle Scholar
  104. 104.
    Wu, Q., Wang, G.Y., Huang, B.: Parameter optimization and analysis of a filter-based density correction model. J. Ship Mech. 20, 789–798 (2016)Google Scholar
  105. 105.
    Crank, J., Nicolson, P.: A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Adv. Comput. Math. 6, 207–226 (1996)Google Scholar
  106. 106.
    Klostermann, J., Schaake, K., Schwarze, R.: Numerical simulation of a rising bubble by VOF with surface compression. Int. J. Numer. Methods Fluids 71, 960–982 (2013)MathSciNetCrossRefGoogle Scholar
  107. 107.
    Theodorsen, T.: General theory of aerodynamic instability and the mechanism of flutter. National Advisory Committee for Aeronautics, Technical Report, No. 496 (1935)Google Scholar
  108. 108.
    Ducoin, A., Young, Y.L.: Hydroelastic response and stability of a hydrofoil in viscous flow. J. Fluids Struct. 38, 40–57 (2013)CrossRefGoogle Scholar
  109. 109.
    Huang, B., Zhao, Y., Wang, G.: Large eddy simulation of turbulent vortex–cavitation interactions in transient sheet/cloud cavitating flows. Comput. Fluids 92, 113–124 (2014)CrossRefGoogle Scholar
  110. 110.
    Young, Y.L., Motley, M.R., Yeung, R.W.: Three-dimensional numerical modeling of the transient fluid–structural interaction response of tidal turbines. J. Offshore Mech. Arctic Eng. 132, 011101 (2010)CrossRefGoogle Scholar
  111. 111.
    Stenius, I., Rosen, A., Kuttenkeuler, J.: Hydroelastic interaction in panel-water impacts of high speed craft. Ocean Eng. 38, 371–381 (2011)CrossRefGoogle Scholar
  112. 112.
    Chimakurthi, S.K., Tang, J., Palacios, R., et al.: Computational aeroelasticity framework for analyzing flapping wing micro air vehicles. AIAA J. 47, 1865–1878 (2009)CrossRefGoogle Scholar
  113. 113.
    Ducoin, A.: Etude experimentale et numerique du chargement hydrodynamique des corps portants en regime transitoire avec prise en compte du couplage fluide structure. [Ph.D. Thesis], Ecole Centrale de Nantes, France (2008) (in French)Google Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.School of Mechanical EngineeringBeijing Institute of TechnologyBeijingChina
  2. 2.Department of Thermal EngineeringTsinghua UniversityBeijingChina

Personalised recommendations