Acta Mechanica Sinica

, Volume 33, Issue 4, pp 663–684 | Cite as

Unsteady bio-fluid dynamics in flying and swimming

Review Paper

Abstract

Flying and swimming in nature present sophisticated and exciting ventures in biomimetics, which seeks sustainable solutions and solves practical problems by emulating nature’s time-tested patterns, functions, and strategies. Bio-fluids in insect and bird flight, as well as in fish swimming are highly dynamic and unsteady; however, they have been studied mostly with a focus on the phenomena associated with a body or wings moving in a steady flow. Characterized by unsteady wing flapping and body undulation, fluid-structure interactions, flexible wings and bodies, turbulent environments, and complex maneuver, bio-fluid dynamics normally have challenges associated with low Reynolds number regime and high unsteadiness in modeling and analysis of flow physics. In this article, we review and highlight recent advances in unsteady bio-fluid dynamics in terms of leading-edge vortices, passive mechanisms in flexible wings and hinges, flapping flight in unsteady environments, and micro-structured aerodynamics in flapping flight, as well as undulatory swimming, flapping-fin hydrodynamics, body–fin interaction, C-start and maneuvering, swimming in turbulence, collective swimming, and micro-structured hydrodynamics in swimming. We further give a perspective outlook on future challenges and tasks of several key issues of the field.

Keywords

Flying Swimming Unsteady bio-fluid dynamics Aerodynamics Hydrodynamics Biomimetics 

References

  1. 1.
    Liu, H., Ravi, S., Kolomenskiy, D., et al.: Biomechanics and biomimetics in insect-inspired flight systems. Phil. Trans. R. Soc. Lond. B 371, 20150390 (2016). doi:10.1098/rstb.2015.0390
  2. 2.
    Lepora, N.F., Verschure, P., Prescott, T.J.: The state of the art in biomimetics. Bioinspir. Biomim. 8, 013001 (2013). doi:10.1088/1748-3182/8/1/013001 CrossRefGoogle Scholar
  3. 3.
    Huang, W.X., Alben, S.: Fluid-structure interactions with applications to biology. Acta Mech. Sin. 32, 977–979 (2016)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Wang, S.Z., He, G., Zhang, X.: Self-propulsion of flapping bodies in viscous fluids: recent advances and perspectives. Acta Mech. Sin. 32, 980–990 (2016)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Wu, T.: Fish swimming and bird/insect flight. Annu. Rev. Fluid Mech. 43, 25–58 (2011). doi:10.1146/annurev-fluid-122109-160648
  6. 6.
    Huhn, F., van Rees, W., Gazzola, M., et al.: Quantitative flow analysis of swimming dynamics with coherent lagrangian vortices. Chaos 25, 087405 (2015). doi:10.1063/1.4919784 MathSciNetCrossRefGoogle Scholar
  7. 7.
    Shyy, W., Lian, Y., Liu, H., et al.: Aerodynamics of Low Reynolds Number Flyers. Cambridge University Press, Cambridge (2007)Google Scholar
  8. 8.
    Kruyt, J.W., van Heijst, G.F., Altshuler, D.L., et al.: Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio. J. R. Soc. Interface 12, 20150051 (2015)CrossRefGoogle Scholar
  9. 9.
    Lu, Y., Shen, G.X., Lai, G.J.: Dual leading-edge vortices on flapping wings. J. Exp. Biol. 209, 5005–5016 (2006)CrossRefGoogle Scholar
  10. 10.
    Lu, Y., Shen, G.X., Su, W.H.: Flow visualization of dragonfly hovering via an electromechanical model. AIAA J. 45, 615–623 (2007)CrossRefGoogle Scholar
  11. 11.
    Lu, Y., Shen, G.X.: Three-dimensional flow structures and evolution of the leading-edge vortices on a flapping wing. J. Exp. Biol. 211, 1221–1230 (2008)CrossRefGoogle Scholar
  12. 12.
    Liu, H., Aono, H.: Size effects on insect hovering aerodynamics: an integrated computational study. Bioinspir. Biomim. 4, 015002 (2009)CrossRefGoogle Scholar
  13. 13.
    Lentink, D., Dickinson, M.H.: Rotational accelerations stabilize leading edge vortices on revolving fly wings. J. Exp. Biol. 212, 2705–2719 (2009)CrossRefGoogle Scholar
  14. 14.
    Harbig, R.R., Sheridan, J., Thompson, M.C.: The role of advance ratio and aspect ratio in determining leading-edge vortex stability for flapping flight. J. Fluid Mech. 751, 71–105 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Phillips, N., Knowles, K., Bomphrey, R.J.: The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing. Bioinspir. Biomim. 10, 056020 (2015)CrossRefGoogle Scholar
  16. 16.
    Phillips, N., Knowles, K., Bomphrey, R.J.: Petiolate wings: effects on the leading-edge vortex in flapping flight. Interface Focus 7, 20160084 (2017)CrossRefGoogle Scholar
  17. 17.
    Kim, D., Gharib, M.: Experimental study of three-dimensional vortex structures in translating and rotating plates. Exp. Fluids 49, 329–339 (2010)CrossRefGoogle Scholar
  18. 18.
    Ozen, C.A., Rockwell, D.: Three-dimensional vortex structure on a rotating wing. J. Fluid. Mech. 707, 541–550 (2012)MATHCrossRefGoogle Scholar
  19. 19.
    Ozen, C.A., Rockwell, D.: Flow structure on a rotating plate. Exp. Fluids 52, 207–223 (2012)MATHCrossRefGoogle Scholar
  20. 20.
    Elimelech, Y., Kolomenskiy, D., Dalziel, S.B., et al.: Evolution of the leading-edge vortex over an accelerating rotating wing. Proc. IUTAM 7, 233–242 (2013)CrossRefGoogle Scholar
  21. 21.
    Garmann, D.J., Visbal, M.R., Orkwis, P.D.: Three-dimensional flow structure and aerodynamic loading on a revolving wing. Phys. Fluids 25, 034101 (2013)CrossRefGoogle Scholar
  22. 22.
    Garmann, D.J., Visbal, M.R.: Dynamics of revolving wings for various aspect ratios. J. Fluid. Mech. 748, 932–956 (2014)CrossRefGoogle Scholar
  23. 23.
    Wolfinger, M., Rockwell, D.: Flow structure on a rotating wing: effect of radius of gyration. J. Fluid. Mech. 755, 83–110 (2014)CrossRefGoogle Scholar
  24. 24.
    Carr, Z.R., DeVoria, A.C., Ringuette, M.J.: Aspect-ratio effects on rotating wings: circulation and forces. J. Fluid. Mech. 767, 497–525 (2015)CrossRefGoogle Scholar
  25. 25.
    Percin, M., van Oudheusden, B.W.: Three-dimensional flow structures and unsteady forces on pitching and surging revolving flat plates. Exp. Fluids 56, 1–19 (2015)CrossRefGoogle Scholar
  26. 26.
    Harbig, R.R., Sheridan, J., Thompson, M.C.: Reynolds number and aspect ratio effects on the leading-edge vortex for rotating insect wing planforms. J. Fluid. Mech. 717, 166–192 (2013)MATHCrossRefGoogle Scholar
  27. 27.
    Harbig, R.R., Sheridan, J., Thompson, M.C.: Relationship between aerodynamic forces, flow structures and wing camber for rotating insect wing planforms. J. Fluid. Mech. 730, 52–75 (2013)MATHCrossRefGoogle Scholar
  28. 28.
    Ansari, S.A., Phillips, N., Stabler, G., et al.: Experimental investigation of some aspects of insect-like flapping flight aerodynamics for application to micro air vehicles. Exp. Fluids 46, 777–798 (2009)CrossRefGoogle Scholar
  29. 29.
    Cheng, B., Sane, S.P., Barbera, G., et al.: Three-dimensional flow visualization and vorticity dynamics in revolving wings. Exp. Fluids 54, 1423 (2013)CrossRefGoogle Scholar
  30. 30.
    Carr, Z.R., Chen, C., Ringuette, M.J.: Finite-span rotating wings: three-dimensional vortex formation and variations with aspect ratio. Exp. Fluids 54, 1444 (2013)CrossRefGoogle Scholar
  31. 31.
    Wolfinger, M., Rockwell, D.: Transformation of flow structure on a rotating wing due to variation of radius of gyration. Exp. Fluids 56, 1–18 (2015)CrossRefGoogle Scholar
  32. 32.
    Jones, A.R., Medina, A., Spooner, H., et al.: Characterizing a burst leading-edge vortex on a rotating flat plate wing. Exp. Fluids 57, 52 (2016)CrossRefGoogle Scholar
  33. 33.
    Liu, H., Ellington, C.P., Kawachi, K., et al.: A computational fluid dynamic study of hawkmoth hovering. J. Exp. Biol. 201, 461–477 (1998)Google Scholar
  34. 34.
    Liu, H.: Integrated modeling of insect flight: from morphology, kinematics to aerodynamics. J. Comput. Phys. 228, 439–459 (2009). doi:10.1016/j.jcp.2008.09.020 MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Jardin, T., David, L.: Coriolis effects enhance lift on revolving wings. Phys. Rev. E. 91, 031001(R) (2015)Google Scholar
  36. 36.
    Jardin, T.: Coriolis effect and the attachment of the leading edge vortex. J. Fluid Mech. 820, 312–340 (2017)Google Scholar
  37. 37.
    Kolomenskiy, D., Elimelech, Y., Schneider, K.: Leading-edge vortex shedding from rotating wings. Fluid Dyn. Res. 46, 031421 (2014)MATHCrossRefGoogle Scholar
  38. 38.
    Maxworthy, T.: The formation and maintenance of a leading-edge vortex during the forward motion of an animal wing. J. Fluid. Mech. 587, 471–475 (2007)MATHCrossRefGoogle Scholar
  39. 39.
    Lentink, D., Dickinson, M.H.: Biofluiddynamic scaling of flapping, spinning and translating fins and wings. J. Exp. Biol. 212, 2691–2704 (2009)CrossRefGoogle Scholar
  40. 40.
    Limacher, E., Morton, C., Wood, D.: On the trajectory of leading-edge vortices under the influence of coriolis acceleration. J. Fluid Mech. 800, R1 (2016)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Chen, D., Kolomenskiy, D., Liu, H.: Closed-form solution for the edge vortex of a revolving plate. J. Fluid Mech. 821, 200–218 (2017). doi:10.1017/jfm.2017.257
  42. 42.
    Wojcik, C.J., Buchholz, J.H.J.: Vorticity transport in the leading-edge vortex on a rotating blade. J. Fluid Mech. 743, 249–261 (2014)CrossRefGoogle Scholar
  43. 43.
    Engels, T., Kolomenskiy, D., Schneider, K., et al.: Helical vortices generated by flapping wings of bumblebees. (2017). (under review)Google Scholar
  44. 44.
    Engels, T., Kolomenskiy, D., Schneider, K., et al.: Bumblebee flight in heavy turbulence. Phys. Rev. Lett. 116, 028103 (2016)CrossRefGoogle Scholar
  45. 45.
    Lu, H., Lua, K.B., Lee, Y.J., et al.: Ground effect on the aerodynamics of three-dimensional hovering wings. Bioinspir. Biomim. 11, 066003 (2016)CrossRefGoogle Scholar
  46. 46.
    Wootton, R.J.: Support and deformability in insect wings. J. Zool. 193, 447–468 (1981)CrossRefGoogle Scholar
  47. 47.
    Dickinson, M.H., Farley, C.T., Full, R.J., et al.: How animals move: an integrative view. Science 288, 100–106 (2000)CrossRefGoogle Scholar
  48. 48.
    Wootton, R.J.: Functional morphology of insect wings. Annu. Rev. Entomol. 37, 113–140 (1992)CrossRefGoogle Scholar
  49. 49.
    Rees, C.J.: Form and function in corrugated insect wings. Nature 256, 200–203 (1975)CrossRefGoogle Scholar
  50. 50.
    Combes, S.A., Daniel, T.L.: Into thin air: contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sexta. J. Exp. Biol 206, 2999–3006 (2003)CrossRefGoogle Scholar
  51. 51.
    Steppan, S.J.: Flexural stiffness patterns of butterfly wings (Papilionoidea). J. Res. Lepid. 35, 61–77 (2000)Google Scholar
  52. 52.
    Combes, S.A., Daniel, T.L.: Flexural stiffness in insect wings i. scaling and the influence of wing venation. J. Exp. Biol 206, 2979–2987 (2003)CrossRefGoogle Scholar
  53. 53.
    Lehmann, F.O., Gorb, S., Nasir, N., et al.: Elastic deformation and energy loss of flapping fly wings. J. Exp. Biol. 214, 2949–2961 (2011)CrossRefGoogle Scholar
  54. 54.
    Weis-Fogh, T.: A rubber-like protein in insect cuticle. J. Exp. Biol. 37, 889–907 (1960)Google Scholar
  55. 55.
    Appel, E., Gorb, S.N.: Resilin-bearing wing vein joints in the dragonfly epiophlebia superstes. Bioinsp. Biomim. 6, 046006 (2011)CrossRefGoogle Scholar
  56. 56.
    Donoughe, S., Crall, J.D., Merz, R.A., et al.: Resilin in dragonfly and damselfly wings and its implications for wing flexibility. J. Morphol. 272, 1409–1421 (2011)CrossRefGoogle Scholar
  57. 57.
    Haas, F., Gorb, S., Blickhan, R.: The function of resilin in beetle wings. Proc. R. Soc. L B 267, 1375–1381 (2000)CrossRefGoogle Scholar
  58. 58.
    Mountcastle, A.M., Combes, S.A.: Wing flexibility enhances load-lifting capacity in bumblebees. Proc. R. Soc. B 280, 20130531 (2013). doi:10.1098/rspb.2013.0531 CrossRefGoogle Scholar
  59. 59.
    Jongerius, S.R., Lentink, D.: Structural analysis of a dragonfly wing. Exp. Mech. 50, 1323–1334 (2010). doi:10.1007/s11340-010-9411-x CrossRefGoogle Scholar
  60. 60.
    Zheng, L., Hedrick, T.L., Mittal, R.: Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies. PLoS ONE 8, e53060 (2012). doi:10.1371/journal.pone.0053060 CrossRefGoogle Scholar
  61. 61.
    Sims, T.W., Palazotto, A.N., Norris, A.: A structural dynamic analysis of a manduca sexta forewing. Int. J. Micro Air Veh. 2, 119–140 (2010)CrossRefGoogle Scholar
  62. 62.
    Dickinson, M.H., Lighton, J.R.B.: Muscle efficiency and elastic storage in the flight motor of drosophila. Science 268, 87–90 (1995)CrossRefGoogle Scholar
  63. 63.
    Ha, N.S., Truong, Q.T., Goo, N.S., et al.: Relationship between wingbeat frequency and resonant frequency of the wing in insects. Bioinspir. Biomim. 8, 046008 (2013)CrossRefGoogle Scholar
  64. 64.
    Chen, J.S., Chen, J.Y., Chou, Y.F.: On the natural frequencies and mode shapes of dragonfly wings. J. Sound Vib. 313, 643–654 (2008)CrossRefGoogle Scholar
  65. 65.
    Sunada, S., Zeng, L., Kawachi, K.: The relationship between dragonfly wing structure and torsional deformation. J. Theor. Biol. 193, 39–45 (1998)CrossRefGoogle Scholar
  66. 66.
    Vanella, M., Fitzgerald, T., Preidikman, S., et al.: Influence of flexibility on the aerodynamic performance of a hovering wing. J. Exp. Biol 212, 95–105 (2009)CrossRefGoogle Scholar
  67. 67.
    Ramananarivo, S., Godoy-Diana, R., Thiria, B.: Rather than resonance, flapping wing flyers may play on aerodynamics to improve performance. Proc. Natl. Acad. Sci. USA 108, 5964–5969 (2011)CrossRefGoogle Scholar
  68. 68.
    Sridhar, M., Kang, C.K.: Aerodynamic performance of two-dimensional, chordwise flexible flapping wings at fruit fly scale in hover flight. Bioinspir. Biomim. 10, 036007 (2015). doi:10.1088/1748-3190/10/3/036007 CrossRefGoogle Scholar
  69. 69.
    Dai, H., Luo, H., Doyle, J.F.: Dynamic pitching of an elastic rectangular wing in hovering motion. J. Fluid Mech. 693, 473–499 (2012)MATHCrossRefGoogle Scholar
  70. 70.
    Yin, B., Luo, H.: Effect of wing inertia on hovering performance of flexible flapping wings. Phys. Fluids 22, 111902 (2010)CrossRefGoogle Scholar
  71. 71.
    Shyy, W., Aono, H., Liu, H., et al.: Recent progress in flapping wing aerodynamics and aeroelasticity. Prog. Aerosp. Sci. 46, 284–327 (2010)Google Scholar
  72. 72.
    Kang, C.K., Aono, H., Cesnik, C.E.S., et al.: Effects of flexibility on the aerodynamic performance of flapping wings. J. Fluid Mech. 689, 32–74 (2011). doi:10.1017/jfm.2011.428 MATHCrossRefGoogle Scholar
  73. 73.
    Kang, C.K., Shyy, W.: Scaling law and enhancement of lift generation of an insect-size hovering flexible wing. J. R. Soc. Interface 10, 20130361 (2013)CrossRefGoogle Scholar
  74. 74.
    Kang, C.K., Shyy, W.: Analytical model for instantaneous lift and shape deformation of an insect-scale flapping wing in hover. J. R. Soc. Interface 11, 20140933 (2014)CrossRefGoogle Scholar
  75. 75.
    Kodali, D., Kang, C.K.: An analytical model and scaling of chordwise flexible flapping wings in forward flight. Bioinspir. Biomim. 12, 016006 (2016). doi:10.1088/1748-3190/12/1/016006 CrossRefGoogle Scholar
  76. 76.
    Shyy, W., Kang, C.K., Chiarattananon, P., et al.: Aerodynamics, sensing and control of insect-scale flapping-wing flight. Proc. R. Soc. A 472, 20150712 (2016)CrossRefGoogle Scholar
  77. 77.
    Mistick, E.A., Mountcastle, A.M., Combes, S.A.: Wing flexibility improves bumblebee flight stability. J. Exp. Biol. 219, 3384–3390 (2016)CrossRefGoogle Scholar
  78. 78.
    Lua, K.B., Lai, K.C., Lim, T.T., et al.: On the aerodynamic characteristics of hovering rigid and flexible hawkmoth-like wings. Exp. Fluids 49, 1263–1291 (2010)CrossRefGoogle Scholar
  79. 79.
    Zhao, L., Huang, Q., Deng, X., et al.: Aerodynamic effects of flexibility in flapping wings. J. R. Soc. Interface 7, 485–497 (2010)CrossRefGoogle Scholar
  80. 80.
    Zhao, L., Deng, X., Sane, S.P.: Modulation of leading edge vorticity and aerodynamic forces in flexible flapping wings. Bioinsp. Biomim. 6, 036007 (2011)CrossRefGoogle Scholar
  81. 81.
    Eldredge, J.D., Toomey, J., Medina, A.: On the roles of chord-wise flexibility in a flapping wing with hovering kinematics. J. Fluid Mech. 659, 94–115 (2010)MATHCrossRefGoogle Scholar
  82. 82.
    Nakata, T., Liu, H.: Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach. Proc. R. Soc. B 279, 722–731 (2012)CrossRefGoogle Scholar
  83. 83.
    Noda, R., Nakata, T., Liu, H.: Effects of wing deformation on aerodynamic performance of a revolving insect wing. Acta Mech. Sin. 30, 819–827 (2014). doi:10.1007/s10409-014-0095-9 MathSciNetMATHCrossRefGoogle Scholar
  84. 84.
    Carruthers, A.C., Thomas, A.L.R., Taylor, G.K.: Automatic aeroelastic devices in the wings of a steppe eagle aquila nipalensis. J. Exp. Biol. 210, 4136–4149 (2007)CrossRefGoogle Scholar
  85. 85.
    Walker, S.M., Thomas, A.L.R., Taylor, G.K.: Deformable wing kinematics in the desert locust: how and why do camber, twist and topography vary through the stroke? J. R. Soc. Interface 6, 735–747 (2009)CrossRefGoogle Scholar
  86. 86.
    Walker, S.M., Thomas, A.L.R., Taylor, G.K.: Photogrammetric reconstruction of high-resolution surface topographies and deformable wing kinematics of tethered locusts and free-flying hoverflies. J. R. Soc. Interface 6, 351–366 (2009)CrossRefGoogle Scholar
  87. 87.
    Walker, S.M., Thomas, A.L.R., Taylor, G.K.: Deformable wing kinematics in free-flying hoverflies. J. R. Soc. Interface 7, 131–142 (2010)CrossRefGoogle Scholar
  88. 88.
    Young, J., Walker, S.M., Bomphrey, R.J., et al.: Details of insect wing design and deformation enhance aerodynamic function and flight efficiency. Science 325, 1549–1552 (2009)CrossRefGoogle Scholar
  89. 89.
    Zheng, L., Hedrick, T.L., Mittal, R.: A multi-fidelity modeling approach for evaluation and optimization of wing stroke aerodynamics in flapping flight. J. Fluid Mech. 721, 118–154 (2013)MATHCrossRefGoogle Scholar
  90. 90.
    Le, T.Q., Truong, T.V., Park, S.H., et al.: Improvement of the aerodynamic performance by wing flexibility and elytra -hind wing interaction of a beetle during forward flight. J. R. Soc. Interface 10, 20130312 (2013)CrossRefGoogle Scholar
  91. 91.
    Usherwood, J.W., Ellington, C.P.: The aerodynamics of revolving wings. I. Model hawkmoth wing. J. Exp. Biol. 205, 1547–1564 (2002)Google Scholar
  92. 92.
    Du, G., Sun, M.: Effects of wing deformation on aerodynamic forces in hovering hoverflies. J. Exp. Biol. 213, 2273–2283 (2010). doi:10.1242/jeb.040295 CrossRefGoogle Scholar
  93. 93.
    Ennos, A.R.: The inertial cause of wing rotation in diptera. J. Exp. Biol. 140, 161–169 (1988)Google Scholar
  94. 94.
    Bergou, A.J., Xu, S., Wang, Z.J.: Passive wing pitch reversal in insect flight. J. Fluid Mech. 591, 321–337 (2007)MATHCrossRefGoogle Scholar
  95. 95.
    Ishihara, D., Horie, T., Denda, M.: A two-dimensional computational study on the fluid-structure interaction cause of wing pitch changes in dipteran flapping flight. J. Exp. Biol. 212, 1–10 (2009)CrossRefGoogle Scholar
  96. 96.
    Ishihara, D., Yamashita, Y., Horie, T., et al.: Passive maintenance of high angle of attack and its lift generation during flapping translation in crane fly wing. J. Exp. Biol. 212, 3882–3891 (2009)CrossRefGoogle Scholar
  97. 97.
    Ishihara, D., Horie, T.: Passive mechanism of pitch recoil in flapping insect wings. Bioinspir. Biomim. 12, 016008 (2017). doi:10.1088/1748-3190/12/1/016008 CrossRefGoogle Scholar
  98. 98.
    Bergou, A.J., Ristroph, L., Guckenheimer, J., et al.: Fruit flies modulate passive wing pitching to generate in-flight turns. Phys. Rev. Lett. 104, 148101 (2010). doi:10.1103/PhysRevLett.104.148101 CrossRefGoogle Scholar
  99. 99.
    Beatus, T., Cohen, I.: Wing-pitch modulation in maneuvering fruit flies is explained by an interplay between aerodynamics and a torsional spring. Phys. Rev. E 92, 022712 (2015)CrossRefGoogle Scholar
  100. 100.
    Whitney, J.P., Wood, R.J.: Aeromechanics of passive rotation in flapping flight. J. Fluid Mech. 660, 197–220 (2010)MathSciNetMATHCrossRefGoogle Scholar
  101. 101.
    Chen, Y., Gravish, N., Desbiens, A.L., et al.: Experimental and computational studies of the aerodynamic performance of a flapping and passively rotating insect wing. J. Fluid Mech. 791, 1–33 (2016)MathSciNetCrossRefGoogle Scholar
  102. 102.
    Finnigan, J.: Turbulence in plant canopies. Annu. Rev. Fluid Mech. 32, 519–571 (2000). doi:10.1146/annurev.fluid.32.1.519 MATHCrossRefGoogle Scholar
  103. 103.
    Chapman, J.W., Drake, V.A.: Insect migration. In: Encyclopedia of Animal Behavior, Vol. 2. Elsevier, 161–166 (2010). doi:10.1016/B978-0-08-045337-8.00073-5
  104. 104.
    Crall, J.D., Chang, J.J., Oppenheimer, R.L., et al.: Foraging in an unsteady world: bumblebee flight performance in field-realistic turbulence. Interface Focus 7, 20160086 (2017). doi:10.1098/rsfs.2016.0086 CrossRefGoogle Scholar
  105. 105.
    Combes, S.A., Dudley, R.: Turbulence-driven instabilities limit insect flight performance. Proc. Natl. Acad. Sci. USA 106, 9105–9108 (2009)CrossRefGoogle Scholar
  106. 106.
    Vance, J.T., Faruque, I., Humbert, J.S.: Kinematic strategies for mitigating gust perturbations in insects. Bioinspir. Biomim. 8, 016004 (2013)CrossRefGoogle Scholar
  107. 107.
    Ristroph, L., Bergou, A.J., Ristroph, G., et al.: Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles. Proc. Natl. Acad. Sci. USA 107, 4820–4824 (2010). doi:10.1073/pnas.1000615107 CrossRefGoogle Scholar
  108. 108.
    Ortega-Jimenez, V.M., Mittal, R., Hedrick, T.L.: Hawkmoth flight performance in tornado-like whirlwind vortices. Bioinspir. Biomim. 9, 025003 (2014). doi:10.1088/1748-3182/9/2/025003 CrossRefGoogle Scholar
  109. 109.
    Ravi, S., Crall, J.D., Fisher, A.M., et al.: Rolling with the flow: bumblebees flying in unsteady wakes. J. Exp. Biol. 216, 4299–4309 (2013)CrossRefGoogle Scholar
  110. 110.
    Ravi, S., Kolomenskiy, D., Engels, T., et al.: Bumblebees minimize control challenges by combining active and passive modes in unsteady winds. Sci. Rep. 6, 35043 (2016)CrossRefGoogle Scholar
  111. 111.
    Ortega-Jimenez, V.M., Greeter, J.S.M., Mittal, R., et al.: Hawkmoth flight stability in turbulent vortex streets. J. Exp. Biol. 216, 4567–4579 (2013)CrossRefGoogle Scholar
  112. 112.
    Ortega-Jimenez, V.M., Sapir, N., Wolf, M., et al.: Into turbulent air: size-dependent effects of von Kármán vortex streets on hummingbird flight kinematics and energetics. Proc. R. Soc. B 281, 20140180 (2014)CrossRefGoogle Scholar
  113. 113.
    Ortega-Jimenez, V.M., Badger, M., Wang, H., et al.: Into rude air: hummingbird flight performance in variable aerial environments. Phil. Trans. R. Soc. B 371, 20150387 (2016)CrossRefGoogle Scholar
  114. 114.
    Ravi, S., Crall, J.D., McNeilly, L., et al.: Hummingbird flight stability and control in freestream turbulent winds. J. Exp. Biol. 218, 1444–1452 (2015)CrossRefGoogle Scholar
  115. 115.
    Fisher, A., Ravi, S., Watkins, S., et al.: The gust-mitigating potential of flapping wings. Bioinspir. Biomim. 11, 046010 (2016)CrossRefGoogle Scholar
  116. 116.
    Kolomenskiy, D., Ravi, S., Takabayashi, T., et al.: Added costs of insect-scale flapping flight in unsteady airflows. https://arxiv.org/abs/1610.09101 (2017)
  117. 117.
    Reddy, G., Celani, A., Sejnowski, T.J., et al.: Learning to soar in turbulent environments. Proc. Natl. Acad. Sci. USA 113, E4877–E4884 (2016). doi:10.1073/pnas.1606075113 CrossRefGoogle Scholar
  118. 118.
    van Bokhorst, E., de Kat, R., Elsinga, G.E., et al.: Feather roughness reduces flow separation during low Reynolds number glides of swifts. J. Exp. Biol. 218, 3179–3191 (2015). doi:10.1242/jeb.121426
  119. 119.
    de Langre, E.: Effects of wind on plants. Annu. Rev. Fluid Mech. 40, 141–168 (2008)MathSciNetMATHCrossRefGoogle Scholar
  120. 120.
    Favier, J., Dauptain, A., Basso, D., et al.: Passive separation control using a self-adaptive hairy coating. J. Fluid Mech. 627, 451–483 (2009). doi:10.1017/S0022112009006119 MathSciNetMATHCrossRefGoogle Scholar
  121. 121.
    Rees, C.J.C.: Form and function in corrugated insect wings. Nature 256, 200–203 (1975)CrossRefGoogle Scholar
  122. 122.
    Newman, D.J.S., Wootton, R.J.: An approach to the mechanics of pleating in dragonfly wings. J. Exp. Biol. 125, 361–372 (1986)Google Scholar
  123. 123.
    Kesel, A.B.: Aerodynamic characteristics of dragonfly wing sections compared with technical aerofoils. J. Exp. Biol. 203, 3125–3135 (2000)Google Scholar
  124. 124.
    Vargas, A., Mittal, R., Dong, H.: A computational study of the aerodynamic performance of a dragonfly wing section in gliding flight. Bioinsp. Biomim. 3, 026004 (2008)CrossRefGoogle Scholar
  125. 125.
    Levy, D.E., Seifert, A.: Simplified dragonfly airfoil aerodynamics at Reynolds numbers below 8000. Phys. Fluids 21, 071901 (2009)MATHCrossRefGoogle Scholar
  126. 126.
    Levy, D.E., Seifert, A.: Parameter study of simplified dragonfly airfoil geometry at Reynolds number of 6000. J. Theor. Biol. 266, 691–702 (2010)CrossRefGoogle Scholar
  127. 127.
    Murphy, J.T., Hu, H.: An experimental study of a bio-inspired corrugated airfoil for micro air vehicle applications. Exp. Fluids 49, 531–546 (2010)CrossRefGoogle Scholar
  128. 128.
    Brandt, J., Doig, G., Tsafnat, N.: Computational aerodynamic analysis of a micro-CT based bio-realistic fruit fly wing. PLoS ONE 10, 1–16 (2015). doi:10.1371/journal.pone.0124824 Google Scholar
  129. 129.
    Bomphrey, R.J., Nakata, T., Henningsson, P., et al.: Flight of the dragonflies and damselflies. Phil. Trans. R. Soc. B 371, 20150389 (2016)CrossRefGoogle Scholar
  130. 130.
    Weis-Fogh, T.: Quick estimates of fight fitness in hovering animals, including novel mechanisms for lift production. J. Exp. Biol. 59, 169–230 (1973)Google Scholar
  131. 131.
    Jones, S.K., Yun, Y.J.J., Hedrick, T.L., et al.: Bristles reduce the force required to ‘fling’ wings apart in the smallest insects. J. Exp. Biol. 219, 3759–3772 (2016). doi:10.1242/jeb.143362 CrossRefGoogle Scholar
  132. 132.
    Cheer, A.Y.L., Koehl, M.A.R.: Paddles and rakes- fluid flow through bristled appendages of small organisms. J. Theor. Biol. 129, 17–39 (1987)CrossRefGoogle Scholar
  133. 133.
    Sunada, S., Takashima, H., Hattori, T., et al.: Fluid-dynamic characteristics of a bristled wing. J. Exp. Biol. 205, 2737–2744 (2002)Google Scholar
  134. 134.
    Takahashi, H., Sato, K., Nguyen, M.D., et al.: Characteristic evaluation of a bristled wing using mechanical models of a thrips wings with MEMS piezoresistive cantilevers. J. Biomech. Sci. Eng. 10, 1–10 (2014). doi:10.1299/jbse.14-00233 Google Scholar
  135. 135.
    Sudo, S., Matsui, N., Sekine, K., et al.: Hydrodynamic function of cilia in living creatures. J. JSEM 9, 145–150 (2009)Google Scholar
  136. 136.
    Graham, R.R.: The silent flight of owls. J. R. Aeronaut. Soc. 38, 837–843 (1934)CrossRefGoogle Scholar
  137. 137.
    Bachmann, T., Wagner, H.: The three-dimensional shape of serrations at barn owl wings: towards a typical natural serration as a role model for biomimetic applications. J. Anat. 219, 192–202 (2011). doi:10.1111/j.1469-7580.2011.01384.x CrossRefGoogle Scholar
  138. 138.
    Bachmann, T., Wagner, H., Tropea, C.: Inner vane fringes of barn owl feathers reconsidered: morphometric data and functional aspects. J. Anat. 221, 1–8 (2012). doi:10.1111/j.1469-7580.2012.01504.x CrossRefGoogle Scholar
  139. 139.
    Wagner, H., Weger, M., Klaas, M., et al.: Features of owl wings that promote silent flight. Interface Focus (2017). doi:10.1098/rsfs.2016.0078
  140. 140.
    Gruschka, H.D., Borchers, I.U., Coble, J.G.: Aerodynamic noise produced by a gliding owl. Nature 233, 409–411 (1971). doi:10.1038/233409a0 CrossRefGoogle Scholar
  141. 141.
    Chen, K., Liu, Q., Liao, G., et al.: The sound suppression characteristics of wing feather of owl (Bubo bubo). J. Bionic Eng. 9, 192–199 (2012). doi:10.1016/S1672-6529(11)60109-1 CrossRefGoogle Scholar
  142. 142.
    Sarradj, E., Fritzsche, C., Geyer, T.: Silent owl flight: bird flyover noise measurements. AIAA J. 49, 769–779 (2011). doi:10.2514/1.J050703 CrossRefGoogle Scholar
  143. 143.
    Weger, M., Wagner, H.: Morphological variations of leading-edge serrations in owls (Strigiformes). PLoS ONE 11, e0149236 (2016). doi:10.1371/journal.pone.0149236 CrossRefGoogle Scholar
  144. 144.
    Soderman, P.T.: Leading edge serrations which reduce the noise of low-speed rotors. Technical report, NASA TN D-7371 (1973)Google Scholar
  145. 145.
    Hersh, A.S., Sodermant, P.T., Hayden, R.E.: Investigation of acoustic effects of leading-edge serrations on airfoils. J. Aircr. 11, 197–202 (1974). doi:10.2514/3.59219 CrossRefGoogle Scholar
  146. 146.
    Narayanan, S., Chaitanya, P., Haeri, S., et al.: Airfoil noise reductions through leading edge serrations. Phys. Fluids 27, 025109 (2015). doi:10.1063/1.4907798 CrossRefGoogle Scholar
  147. 147.
    Geyer, T.F., Claus, V.T., Sarradj, E.: Silent owl flight: The effect of the leading edge comb on the gliding flight noise. In: 22nd AIAA/CEAS Aeroacoustics Conference, AIAA2–16–3017 (2016). doi:10.2514/6.2016-3017
  148. 148.
    Chen, W., Qiao, W., Wang, X., et al.: An experimental and numerical investigation of airfoil instability noise with leading edge serrations. In: 22nd AIAA/CEAS Aeroacoustics Conference, AIAA2016–2956 (2016). doi:10.2514/6.2016-2956
  149. 149.
    Klän, S., Klaas, M., Schröder, W.: The influence of leading edge serrations on the flow field of an artificial owl wing. In: 28th AIAA Applied Aerodynamics Conference 4942, AIAA2010–4942 (2010)Google Scholar
  150. 150.
    Winzen, A., Roidl, B., Klän, S., Klaas, M., Schröder, W.: Particle-image velocimetry and force measurements of leading-edge serrations on owl-based wing models. J. Bionic Eng. 11, 423–438 (2014). doi:10.1016/S1672-6529(14)60055-X CrossRefGoogle Scholar
  151. 151.
    Jaworski, J.W., Peake, N.: Aerodynamic noise from a poroelastic edge with implications for the silent flight of owls. J. Fluid Mech. 723, 456–479 (2013). doi:10.1017/jfm.2013.139 MathSciNetMATHCrossRefGoogle Scholar
  152. 152.
    Geyer, T., Sarradj, E., Fritzsche, C.: Measurement of the noise generation at the trailing edge of porous airfoils. Exp. Fluids 48, 291–308 (2010). doi:10.1007/s00348-009-0739-x CrossRefGoogle Scholar
  153. 153.
    Moreau, D.J., Doolan, C.J.: Tonal noise from trailing edge serrations at low Reynolds numbers. In: 19th AIAA/CEAS Aeroacoustics Conference, AIAA2013–2010 (2013). doi:10.2514/6.2013-2010
  154. 154.
    León, C.A., Ragni, D., Pröbsting, S., Scarano, F., Madsen, J.: Flow topology and acoustic emissions of trailing edge serrations at incidence. Exp. Fluids 57, 91 (2016)CrossRefGoogle Scholar
  155. 155.
    Liu, X., Kamliya Jawahar, H., Azarpeyvand, M., et al.: Wake development of airfoils with serrated trailing edges. In: 22nd AIAA/CEAS Aeroacoustics Conference, AIAA2016–2817 (2016). doi:10.2514/6.2016-2817
  156. 156.
    Klän, S., Bachmann, T., Klaas, M., et al.: Experimental analysis of the flow field over a novel owl based airfoil. Exp. Fluids 46, 975–989 (2009)CrossRefGoogle Scholar
  157. 157.
    Klän, S., Burgmann, S., Bachmann, T., et al.: Surface structure and dimensional effects on the aerodynamics of an owl-based wing model. Eur. J. Mech. B Fluids 33, 58–73 (2012). doi:10.1016/j.euromechflu.2011.12.006 MATHCrossRefGoogle Scholar
  158. 158.
    Winzen, A., Klaas, M., Schröder, W.: High-speed PIV measurements of the near-wall flow field over hairy surfaces. Exp. Fluids 54, 1472 (2013). doi:10.1007/s00348-013-1472-z CrossRefGoogle Scholar
  159. 159.
    Lighthill, M.J.: Large-amplitude elongated-body theory of fish locomotion. Proc. R. Soc. B 179, 125–138 (1971). doi:10.1098/rspb.1971.0085 CrossRefGoogle Scholar
  160. 160.
    Taylor, G.: Analysis of the swimming of microscopic organisms. Proc. R. Soc. A 209, 447–461 (1951). doi:10.1098/rspa.1951.0218 MathSciNetMATHCrossRefGoogle Scholar
  161. 161.
    Webb, P.W.: Form and function in fish swimming. Sci. Am. 251, 72–82 (1984)Google Scholar
  162. 162.
    Daniel, T.L.: Unsteady aspects of aquatic locomotion1. Am. Zool. 24, 121 (1984). doi:10.1093/icb/24.1.121 CrossRefGoogle Scholar
  163. 163.
    Ellington, C.P.: Unsteady aerodynamics of insect flight. Symp. Soc. Exp. Biol. 49, 109–129 (1995)Google Scholar
  164. 164.
    Ellington, C.P., van den Berg, C., Thomas, A.P., et al.: Leading-edge vortices in insect flight. Nature 384, 626–630 (1996). doi:10.1038/384626a0 CrossRefGoogle Scholar
  165. 165.
    Dickinson, M.H.: Unsteady mechanisms of force generation in aquatic and aerial locomotion. Am. Zool. 36, 537–554 (1996)CrossRefGoogle Scholar
  166. 166.
    Drucker, E.G., Lauder, G.V.: Locomotor forces on a swimming fish: three-dimensional vortex wake dynamics quantified using digital particle image velocimetry. J. Exp. Biol. 202, 2393–2412 (1999)Google Scholar
  167. 167.
    Müller, U.K., van den Boogaart, J.G.M., van Leeuwen, J.L.: Flow patterns of larval fish: undulatory swimming in the intermediate flow regime. J. Exp. Biol. 211, 196–205 (2007). doi:10.1242/jeb.005629 CrossRefGoogle Scholar
  168. 168.
    Flammang, B.E., Lauder, G.V., Troolin, D.R., et al.: Volumetric imaging of shark tail hydrodynamics reveals a three-dimensional dual-ring vortex wake structure. Proc. R. Soc. B 278, 3670–3678 (2011). doi:10.1098/rspb.2011.0489 CrossRefGoogle Scholar
  169. 169.
    Voesenek, C.J., Pieters, R.P.M., van Leeuwen, J.L.: Automated reconstruction of three-dimensional fish motion, forces, and torques. PLoS ONE 11, 1–17 (2016). doi:10.1371/journal.pone.0146682 CrossRefGoogle Scholar
  170. 170.
    Wolfgang, M.J., Anderson, J.M., Grosenbaugh, M.A., et al.: Near-body flow dynamics in swimming fish. J. Exp. Biol. 202, 2303–2327 (1999)Google Scholar
  171. 171.
    Liu, H., Wassersug, R., Kawachi, K.: A computational fluid dynamics study of tadpole swimming. J. Exp. Biol. 199, 1245–1260 (1996)Google Scholar
  172. 172.
    Liu, H., Wassersug, R., Kawachi, K.: The three-dimensional hydrodynamics of tadpole locomotion. J. Exp. Biol. 200, 2807–2819 (1997)Google Scholar
  173. 173.
    Borazjani, I., Sotiropoulos, F.: Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes. J. Exp. Biol. 211, 1541–1558 (2008). doi:10.1242/jeb.015644 CrossRefGoogle Scholar
  174. 174.
    Borazjani, I., Sotiropoulos, F.: On the role of form and kinematics on the hydrodynamics of self-propelled body/caudal fin swimming. J. Exp. Biol. 213, 89–107 (2009). doi:10.1242/jeb.030932 MATHCrossRefGoogle Scholar
  175. 175.
    Li, G., Müller, U.K., van Leeuwen, J.L., et al.: Body dynamics and hydrodynamics of swimming fish larvae: a computational study. J. Exp. Biol. 215, 4015–4033 (2012). doi:10.1242/jeb.071837 CrossRefGoogle Scholar
  176. 176.
    Li, G., Müller, U.K., van Leeuwen, J.L., et al.: Fish larvae exploit edge vortices along their dorsal and ventral fin folds to propel themselves. J. R. Soc. Interface 13, 20160068 (2016). doi:10.1098/rsif.2016.0068
  177. 177.
    Tangorra, J.L., Lauder, G.V., Hunter, I.W., et al.: The effect of fin ray flexural rigidity on the propulsive forces generated by a biorobotic fish pectoral fin. J. Exp. Biol. 213, 4043–4054 (2010). doi:10.1242/jeb.048017 CrossRefGoogle Scholar
  178. 178.
    Curet, O.M., Patankar, N.A., Lauder, G.V., et al.: Mechanical properties of a bio-inspired robotic knifefish with an undulatory propulsor. Bioinspir. Biomim. 6, 026004 (2011)CrossRefGoogle Scholar
  179. 179.
    Quinn, D.B., Lauder, G.V., Smits, A.J.: Scaling the propulsive performance of heaving flexible panels. J. Fluid. Mech. 738, 250–267 (2014). doi:10.1017/jfm.2013.597 CrossRefGoogle Scholar
  180. 180.
    Ramananarivo, S., Godoy-Diana, R., Thiria, B.: Passive elastic mechanism to mimic fish-muscle action in anguilliform swimming. J. R. Soc. Interface 10, 23985737 (2013). doi:10.1098/rsif.2013.0667
  181. 181.
    Park, S.J., Gazzola, M., Park, K.S., et al.: Phototactic guidance of a tissue-engineered soft-robotic ray. Science 353, 158–162 (2016). doi:10.1126/science.aaf4292 CrossRefGoogle Scholar
  182. 182.
    Sfakiotakis, M., Lane, D.M., Davies, J.B.C.: Review of fish swimming modes for aquatic locomotion. IEEE J. Oceanic Eng. 24, 237–252 (1999)CrossRefGoogle Scholar
  183. 183.
    Lau, T.C.W., Kelso, R.M.: A scaling law for thrust generating unsteady hydrofoils. J. Fluids Struct. 65, 455–471 (2016)CrossRefGoogle Scholar
  184. 184.
    Bandyopadhyay, P.R., Beal, D.N., Menozzi, A.: Biorobotic insights into how animals swim. J. Exp. Biol. 211, 206–214 (2007). doi:10.1242/jeb.012161 CrossRefGoogle Scholar
  185. 185.
    Lauder, G.V., Madden, P.G.A., Mittal, R., et al.: Locomotion with flexible propulsors: I. Experimental analysis of pectoral fin swimming in sunfish. Bioinspir. Biomim. 1, S25 (2006)CrossRefGoogle Scholar
  186. 186.
    Dong, H., Bozkurttas, M., Mittal, R., et al.: Computational modelling and analysis of the hydrodynamics of a highly deformable fish pectoral fin. J. Fluid Mech. 645, 345–373 (2010). doi:10.1017/S0022112009992941 MATHCrossRefGoogle Scholar
  187. 187.
    Liu, G., Ren, Y., Zhu, J., et al.: Thrust producing mechanisms in ray-inspired underwater vehicle propulsion. Theor. Appl. Mech. Lett. 5, 54–57 (2015)CrossRefGoogle Scholar
  188. 188.
    Fish, F.E., Schreiber, C.M., Moored, K.W., et al.: Hydrodynamic performance of aquatic flapping: efficiency of underwater flight in the manta. Aerospace 3, 20 (2016). doi:10.3390/aerospace3030020
  189. 189.
    Shoele, K., Zhu, Q.: Numerical simulation of a pectoral fin during labriform swimming. J. Exp. Biol. 213, 2038–2047 (2010). doi:10.1242/jeb.040162 CrossRefGoogle Scholar
  190. 190.
    Beem, H.R., Rival, D.E., Triantafyllou, M.S.: On the stabilization of leading-edge vortices with spanwise flow. Exp. Fluids 52, 511–517 (2012). doi:10.1007/s00348-011-1241-9 CrossRefGoogle Scholar
  191. 191.
    Borazjani, I., Daghooghi, M.: The fish tail motion forms an attached leading edge vortex. Proc. R. Soc. B 280, 23407826 (2013). doi:10.1098/rspb.2012.2071
  192. 192.
    Gemmell, B.J., Colin, S.P., Costello, J.H., et al.: Suction-based propulsion as a basis for efficient animal swimming. Nat. Commun. 6, 8790 (2015). doi:10.1038/ncomms9790 CrossRefGoogle Scholar
  193. 193.
    Gemmell, B.J., Fogerson, S.M., Costello, J.H., et al.: How the bending kinematics of swimming lampreys build negative pressure fields for suction thrust. J. Exp. Biol. 219, 3884–3895 (2016). doi:10.1242/jeb.144642 CrossRefGoogle Scholar
  194. 194.
    Brücker, C., Bleckmann, H.: Vortex dynamics in the wake of a mechanical fish. Exp. Fluids 43, 799–810 (2007). doi:10.1007/s00348-007-0359-2 CrossRefGoogle Scholar
  195. 195.
    Anderson, E.J., McGillis, W.R., Grosenbaugh, M.A.: The boundary layer of swimming fish. J. Exp. Biol. 204, 81–102 (2001)Google Scholar
  196. 196.
    Kern, S., Koumoutsakos, P.: Simulations of optimized anguilliform swimming. J. Exp. Biol. 209, 4841–4857 (2006). doi:10.1242/jeb.02526 CrossRefGoogle Scholar
  197. 197.
    Blevins, E.L., Lauder, G.V.: Rajiform locomotion: three-dimensional kinematics of the pectoral fin surface during swimming in the freshwater stingray potamotrygon orbignyi. J. Exp. Biol. 215, 3231–3241 (2012). doi:10.1242/jeb.068981 CrossRefGoogle Scholar
  198. 198.
    Bottom II, R.G., Borazjani, I., Blevins, E.L., et al.: Hydrodynamics of swimming in stingrays: numerical simulations and the role of the leading-edge vortex. J. Fluid. Mech. 788, 407–443 (2016). doi:10.1017/jfm.2015.702 MathSciNetCrossRefGoogle Scholar
  199. 199.
    Shirgaonkar, A.A., Curet, O.M., Patankar, N.A., et al.: The hydrodynamics of ribbon-fin propulsion during impulsive motion. J. Exp. Biol. 211, 3490–3503 (2008). doi:10.1242/jeb.019224 CrossRefGoogle Scholar
  200. 200.
    Tytell, E.D.: Median fin function in bluegill sunfish lepomis macrochirus: streamwise vortex structure during steady swimming. J. Exp. Biol. 209, 1516–1534 (2006). doi:10.1242/jeb.02154 CrossRefGoogle Scholar
  201. 201.
    Standen, E.M., Lauder, G.V.: Hydrodynamic function of dorsal and anal fins in brook trout (salvelinus fontinalis). J. Exp. Biol. 210, 325–339 (2007). doi:10.1242/jeb.02661 CrossRefGoogle Scholar
  202. 202.
    Akhtar, I., Mittal, R., Lauder, G.V., et al.: Hydrodynamics of a biologically inspired tandem flapping foil configuration. Theor. Comp. Fluid Dyn. 21, 155–170 (2007). doi:10.1007/s00162-007-0045-2 MATHCrossRefGoogle Scholar
  203. 203.
    Yu, C.L., Ting, S.C., Yeh, M.K., et al.: Three-dimensional numerical simulation of hydrodynamic interactions between pectoral-fin vortices and body undulation in a swimming fish. Phys. Fluids 23, 091901 (2011). doi:10.1063/1.3640080 CrossRefGoogle Scholar
  204. 204.
    Tytell, E.D., Lauder, G.V.: Hydrodynamics of the escape response in bluegill sunfish, lepomis macrochirus. J. Exp. Biol. 211, 3359–3369 (2008). doi:10.1242/jeb.020917 CrossRefGoogle Scholar
  205. 205.
    Li, G., Liu, H., Mller, U.K., et al.: Swimming hydrodynamics and maneuverability in c-start of zebrafish larvae: An integrated computational study. In: ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Vol. 1, Symposia–Parts A, B, C, and D, Hamamatsu, Japan, July 24–29 (2011). doi:10.1115/AJK2011-19020
  206. 206.
    Li, G., Müller, U.K., van Leeuwen, J.L., et al.: Escape trajectories are deflected when fish larvae intercept their own c-start wake. J. R. Soc. Interface 11, 25401174 (2014). doi:10.1098/rsif.2014.0848
  207. 207.
    Gazzola, M., Rees, W.M.V., Koumoutsakos, P.: C-start: optimal start of larval fish. J. Fluid. Mech. 698, 5–18 (2012). doi:10.1017/jfm.2011.558 MathSciNetMATHCrossRefGoogle Scholar
  208. 208.
    Borazjani, I., Sotiropoulos, F., Tytell, E.D., et al.: Hydrodynamics of the bluegill sunfish c-start escape response: three-dimensional simulations and comparison with experimental data. J. Exp. Biol. 215, 671–684 (2012). doi:10.1242/jeb.063016 CrossRefGoogle Scholar
  209. 209.
    Borazjani, I.: Simulations of unsteady aquatic locomotion: from unsteadiness in straight-line swimming to fast-starts. Integr. Comp. Biol. 55, 740 (2015). doi:10.1093/icb/icv015 CrossRefGoogle Scholar
  210. 210.
    Borazjani, I.: The functional role of caudal and anal/dorsal fins during the c-start of a bluegill sunfish. J. Exp. Biol. 216, 1658–1669 (2013). doi:10.1242/jeb.079434 CrossRefGoogle Scholar
  211. 211.
    Anwar, S.B., Cathcart, K., Darakananda, K., et al.: The effects of steady swimming on fish escape performance. J. Comp. Physiol. A 202, 425–433 (2016). doi:10.1007/s00359-016-1090-3 CrossRefGoogle Scholar
  212. 212.
    Walker, J.A.: Does a rigid body limit maneuverability? J. Exp. Biol. 203, 3391–3396 (2000)Google Scholar
  213. 213.
    Bartol, I.K., Gharib, M., Webb, P.W., et al.: Body-induced vortical flows: a common mechanism for self-corrective trimming control in boxfishes. J. Exp. Biol. 208, 327–344 (2005). doi:10.1242/jeb.01356 CrossRefGoogle Scholar
  214. 214.
    Bartol, I.K., Gordon, M.S., Webb, P., et al.: Evidence of self-correcting spiral flows in swimming boxfishes. Bioinspir. Biomim. 3, 014001 (2008)CrossRefGoogle Scholar
  215. 215.
    Van Wassenbergh, S., van Manen, K., Marcroft, T.A., et al.: Boxfish swimming paradox resolved: forces by the flow of water around the body promote manoeuvrability. J. R. Soc. Interface 12 (2014). doi:10.1098/rsif.2014.1146
  216. 216.
    Heatwole, S.J., Fulton, C.J.: Behavioural flexibility in reef fishes responding to a rapidly changing wave environment. Mar. Biol. 160, 677–689 (2013). doi:10.1007/s00227-012-2123-2 CrossRefGoogle Scholar
  217. 217.
    Yanase, K., Herbert, N.A., Montgomery, J.C.: Disrupted flow sensing impairs hydrodynamic performance and increases the metabolic cost of swimming in the yellowtail kingfish, seriola lalandi. J. Exp. Biol. 215, 3944–3954 (2012). doi:10.1242/jeb.073437 CrossRefGoogle Scholar
  218. 218.
    Cotel, A.J., Webb, P.W., Tritico, H.: Do brown trout choose locations with reduced turbulence? Trans. Am. Fish. Soc. 135, 610–619 (2006)CrossRefGoogle Scholar
  219. 219.
    Enders, E.C., Boisclair, D., Roy, A.G.: The effect of turbulence on the cost of swimming for juvenile atlantic salmon (salmo salar). Can. J. Fish. Aquat. Sci. 60, 1149–1160 (2003). doi:10.1139/f03-101 CrossRefGoogle Scholar
  220. 220.
    Tritico, H.M., Cotel, A.J.: The effects of turbulent eddies on the stability and critical swimming speed of creek chub (semotilus atromaculatus). J. Exp. Biol. 213, 2284–2293 (2010). doi:10.1242/jeb.041806 CrossRefGoogle Scholar
  221. 221.
    Roche, D.G., Taylor, M.K., Binning, S.A., et al.: Unsteady flow affects swimming energetics in a labriform fish (cymatogaster aggregata). J. Exp. Biol. 217, 414–422 (2014). doi:10.1242/jeb.085811 CrossRefGoogle Scholar
  222. 222.
    Liao, J.C., Beal, D.N., Lauder, G.V., et al.: The kármán gait: novel body kinematics of rainbow trout swimming in a vortex street. J. Exp. Biol. 206, 1059–1073 (2003). doi:10.1242/jeb.00209 CrossRefGoogle Scholar
  223. 223.
    Liao, J.C., Beal, D.N., Lauder, G.V., et al.: Fish exploiting vortices decrease muscle activity. Science 302, 1566–1569 (2003). doi:10.1126/science.1088295 CrossRefGoogle Scholar
  224. 224.
    Liao, J.C.: The role of the lateral line and vision on body kinematics and hydrodynamic preference of rainbow trout in turbulent flow. J. Exp. Biol. 209, 4077–4090 (2006). doi:10.1242/jeb.02487 CrossRefGoogle Scholar
  225. 225.
    Liao, J.C.: A review of fish swimming mechanics and behaviour in altered flows. Phil. Trans. R. Soc. Lond. B 362, 1973–1993 (2007). doi:10.1098/rstb.2007.2082 CrossRefGoogle Scholar
  226. 226.
    Akanyeti, O., Liao, J.C.: The effect of flow speed and body size on kármán gait kinematics in rainbow trout. J. Exp. Biol. 216, 3442–3449 (2013). doi:10.1242/jeb.087502 CrossRefGoogle Scholar
  227. 227.
    Akanyeti, O., Liao, J.C.: A kinematic model of kármán gaiting in rainbow trout. J. Exp. Biol. 216, 4666–4677 (2013). doi:10.1242/jeb.093245 CrossRefGoogle Scholar
  228. 228.
    Taguchi, M., Liao, J.C.: Rainbow trout consume less oxygen in turbulence: the energetics of swimming behaviors at different speeds. J. Exp. Biol. 214, 1428–1436 (2011). doi:10.1242/jeb.052027 CrossRefGoogle Scholar
  229. 229.
    Beal, D.N., Hover, F.S., Triantafyllou, M.S., et al.: Passive propulsion in vortex wakes. J. Fluid. Mech. 549, 385–402 (2006). doi:10.1017/S0022112005007925 CrossRefGoogle Scholar
  230. 230.
    Toming, G., Chambers, L.D., Kruusmaa, M.: Experimental study of hydrodynamic forces acting on artificial fish in a von kármán vortex street. Underw. Technol. 32, 81–91 (2014)CrossRefGoogle Scholar
  231. 231.
    Akanyeti, O., Venturelli, R., Visentin, F., et al.: What information do Karman streets offer to flow sensing? Bioinspir. Biomim. 6, 036001 (2011)Google Scholar
  232. 232.
    Venturelli, R., Akanyeti, O., Visentin, F., et al.: Hydrodynamic pressure sensing with an artificial lateral line in steady and unsteady flows. Bioinspir. Biomim. 7, 036004 (2012)CrossRefGoogle Scholar
  233. 233.
    Ježov, J., Akanyeti, O., Chambers, L.D., et al..: Sensing oscillations in unsteady flow for better robotic swimming efficiency. In: 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 91–96 (2012). doi:10.1109/ICSMC.2012.6377682
  234. 234.
    Weihs, D.: Hydromechanics of fish schooling. Nature 241, 290–291 (1973). doi:10.1038/241290a0
  235. 235.
    Green, M.A., Rowley, C.W., Smits, A.J.: The unsteady three-dimensional wake produced by a trapezoidal pitching panel. J. Fluid. Mech. 685, 117–145 (2011). doi:10.1017/jfm.2011.286 MATHCrossRefGoogle Scholar
  236. 236.
    Daghooghi, M., Borazjani, I.: The hydrodynamic advantages of synchronized swimming in a rectangular pattern. Bioinspir. Biomim. 10, 056018 (2015)CrossRefGoogle Scholar
  237. 237.
    Ashraf, I., Godoy-Diana, R., Halloy, J., et al.: Synchronization and collective swimming patterns in fish (hemigrammus bleheri). J. R. Soc. Interface 13, 27798281 (2016). doi:10.1098/rsif.2016.0734
  238. 238.
    Hemelrijk, C.K., Reid, D.A.P., Hildenbrandt, H., et al.: The increased efficiency of fish swimming in a school. Fish Fish. 16, 511–521 (2015). doi:10.1111/faf.12072 CrossRefGoogle Scholar
  239. 239.
    Khalid, M.S.U., Akhtar, I., Dong, H.: Hydrodynamics of a tandem fish school with asynchronous undulation of individuals. J. Fluids Struct. 66, 19–35 (2016)Google Scholar
  240. 240.
    Johansen, J.L., Vaknin, R., Steffensen, J.F., et al.: Kinematics and energetic benefits of schooling in the labriform fish, striped surfperch embiotoca lateralis. Mar. Ecol. Progr. Ser. 420, 221–229 (2010)CrossRefGoogle Scholar
  241. 241.
    Killen, S.S., Marras, S., Steffensen, J.F., et al.: Aerobic capacity influences the spatial position of individuals within fish schools. Proc. R. Soc. B 279, 357–364 (2011). doi:10.1098/rspb.2011.1006 CrossRefGoogle Scholar
  242. 242.
    Lauder, G.V., Wainwright, D.K., Domel, A.G., et al.: Structure, biomimetics, and fluid dynamics of fish skin surfaces. Phys. Rev. Fluids 1, 060502 (2016). doi:10.1103/PhysRevFluids.1.060502 CrossRefGoogle Scholar
  243. 243.
    Dean, B., Bhushan, B.: Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review. Phil. Trans. R. Soc. Lond. A 368, 4775–4806 (2010). doi:10.1098/rsta.2010.0201 CrossRefGoogle Scholar
  244. 244.
    Wen, L., Weaver, J.C., Lauder, G.V.: Biomimetic shark skin: design, fabrication and hydrodynamic function. J. Exp. Biol. 217, 1656–1666 (2014). doi:10.1242/jeb.097097 CrossRefGoogle Scholar
  245. 245.
    Wen, L., Weaver, J.C., Thornycroft, P.J.M., et al.: Hydrodynamic function of biomimetic shark skin: effect of denticle pattern and spacing. Bioinspir. Biomim. 10, 066010 (2015)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Graduate School of EngineeringChiba UniversityInage-kuJapan
  2. 2.Shanghai-Jiao Tong University and Chiba University International Cooperative Research Centre (SJTU-CU ICRC)ShanghaiChina

Personalised recommendations