Acta Mechanica Sinica

, Volume 33, Issue 4, pp 792–800 | Cite as

Size and strain rate effects in tensile strength of penta-twinned Ag nanowires

  • Xuan Zhang
  • Xiaoyan LiEmail author
  • Huajian GaoEmail author
Research Paper


Penta-twinned Ag nanowires (pt-AgNWs) have recently attracted much attention due to their interesting mechanical and physical properties. Here we perform large-scale atomistic simulations to investigate the influence of sample size and strain rate on the tensile strength of pt-AgNWs. The simulation results show an apparent size effect in that the nanowire strength (defined as the critical stress for dislocation nucleation) increases with decreasing wire diameter. To account for such size effect, a theoretical model involving the interaction between an emerging dislocation and the twin boundary has been developed for the surface nucleation of dislocations. It is shown that the model predictions are in quantitative agreement with the results from atomistic simulations and previous experimental studies in the literatures. The simulations also reveal that nanowire strength is strain-rate dependent, which predicts an activation volume for dislocation nucleation in the range of 1–10\(b^{3}\), where b is the magnitude of the Burgers vector for a full dislocation.


Penta-twinned nanowire Size effect Strain rate effect Dislocation nucleation Atomistic simulation 



The project was supported by the National Natural Science Foundation of China (Grants 11372152 and 51420105001) and the National Natural Science Foundation of United States (Grant CMMI-1161749). The simulations were performed on the TianHe-1 supercomputer at the National Supercomputer Center in Tianjin.


  1. 1.
    Xia, Y., Yang, P., Sun, Y., et al.: One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15, 353–389 (2003)CrossRefGoogle Scholar
  2. 2.
    Lieber, C.M., Wang, Z.: Functional nanowires. MRS Bull. 32, 99–108 (2007)CrossRefGoogle Scholar
  3. 3.
    Sun, Y., Gates, B., Mayers, B., et al.: Crystalline silver nanowires by soft solution processing. Nano Lett. 2, 165–168 (2002)CrossRefGoogle Scholar
  4. 4.
    Sun, Y., Yin, Y., Mayers, B.T., et al.: Uniform silver nanowires synthesis by reducing AgNO\(_{3}\) with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem. Mater. 14, 4736–4745 (2002)CrossRefGoogle Scholar
  5. 5.
    Zhu, Y., Qin, Q., Xu, F., et al.: Size effects on elasticity, yielding, and fracture of silver nanowires: in situ experiments. Phys. Rev. B 85, 045443 (2012)CrossRefGoogle Scholar
  6. 6.
    Filleter, T., Ryu, S., Kang, K., et al.: Nucleation-controlled distributed plasticity in penta-twinned silver nanowires. Small 8, 2986–2993 (2012)CrossRefGoogle Scholar
  7. 7.
    Narayanan, S., Cheng, G., Zeng, Z., et al.: Strain hardening and size effect in fivefold twinned Ag nanowires. Nano Lett. 15, 4037–4044 (2015)CrossRefGoogle Scholar
  8. 8.
    Qin, Q., Yin, S., Cheng, G., et al.: Recoverable plasticity in penta-twinned metallic nanowires governed by dislocation nucleation and retraction. Nat. Commun. 6, 5983 (2015)CrossRefGoogle Scholar
  9. 9.
    Cao, A., Wei, Y.: Atomistic simulations of the mechanical behavior of fivefold twinned nanowires. Phys. Rev. B 74, 214108 (2006)CrossRefGoogle Scholar
  10. 10.
    Wu, J., Nagao, S., He, J., et al.: Role of fivefold twin boundary on the enhanced mechanical properties of fcc Fe nanowires. Nano Lett. 11, 5264–5273 (2011)CrossRefGoogle Scholar
  11. 11.
    Yoo, J.H., Oh, S.I., Jeong, M.S.: The enhanced elastic modulus of nanowires associated with multitwins. J. Appl. Phys. 107, 094316 (2010)CrossRefGoogle Scholar
  12. 12.
    Niekiel, F., Spiecker, E., Bitzek, E.: Influence of anisotropic elasticity on the mechanical properties of fivefold twinned nanowires. J. Mech. Phys. Solids 84, 358–379 (2015)CrossRefGoogle Scholar
  13. 13.
    Zhang, S., Wang, Y.: Molecular dynamics simulation of tension-compression asymmetry in plasticity of fivefold twinned Ag nanopillars. Phys. Lett. A 379, 603–606 (2015)CrossRefGoogle Scholar
  14. 14.
    Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)CrossRefzbMATHGoogle Scholar
  15. 15.
    Parrinello, M., Rahman, A.: Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182 (1981)CrossRefGoogle Scholar
  16. 16.
    Nose, S.: A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984)CrossRefGoogle Scholar
  17. 17.
    Williams, P.L., Mishin, Y., Hamilton, J.C.: An embedded-atom potential for the Cu–Ag system. Modell. Simul. Mater. Sci. Eng. 14, 817 (2006)CrossRefGoogle Scholar
  18. 18.
    Tsai, D.: The virial theorem and stress calculation in molecular dynamics. J. Chem. Phys. 70, 1375–1382 (1979)CrossRefGoogle Scholar
  19. 19.
    Faken, D., Jónsson, H.: Systematic analysis of local atomic structure combined with 3D computer graphics. Comput. Mater. Sci. 2, 279–282 (1994)CrossRefGoogle Scholar
  20. 20.
    Li, D., Wang, F., Yang, Z., et al.: How to identify dislocations in molecular dynamics simulations? Sci. China Phys. Mech. Astron. 57, 2177–2187 (2014)CrossRefGoogle Scholar
  21. 21.
    Chang, T., Cheng, G., Li, C., et al.: On the size-dependent elasticity of penta-twinned silver nanowires. Extreme Mech. Lett. 8, 177–183 (2016)CrossRefGoogle Scholar
  22. 22.
    Jing, G., Duan, H., Sun, X., et al.: Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy. Phys. Rev. B 73, 235409 (2006)CrossRefGoogle Scholar
  23. 23.
    McDowell, M.T., Leach, A.M., Gall, K.: On the elastic modulus of metallic nanowires. Nano Lett. 8, 3613–3618 (2008)CrossRefGoogle Scholar
  24. 24.
    Chen, Z., Jin, Z., Gao, H.: Repulsive force between screw dislocation and coherent twin boundary in aluminum and copper. Phys. Rev. B 75, 212104 (2007)CrossRefGoogle Scholar
  25. 25.
    Deng, C., Sansoz, F.: Repulsive force of twin boundary on curved dislocations and its role on the yielding of twinned nanowires. Scr. Mater. 63, 50–53 (2010)CrossRefGoogle Scholar
  26. 26.
    Gao, H., Rice, J.R.: Application of 3D weight functions II: the stress field and energy of a shear dislocation loop at a crack tip. J. Mech. Phys. Solids 37, 155–174 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Asaro, R.J., Suresh, S.: Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins. Acta Mater. 53, 3369–3382 (2005)CrossRefGoogle Scholar
  28. 28.
    Zhang, Y., Wang, T., Chen, X.: Effect of surface stress on the asymmetric yield strength of nanowires. J. Appl. Phys. 103, 123527 (2008)CrossRefGoogle Scholar
  29. 29.
    Yang, Z., Lu, Z., Zhao, Y.: Atomistic simulation on size-dependent yield strength and defects evolution of metal nanowires. Comput. Mater. Sci. 46, 142–150 (2009)CrossRefGoogle Scholar
  30. 30.
    Wei, Y.: Anisotropic size effect in strength in coherent nanowires with tilted twins. Phys. Rev. B 84, 014107 (2011)CrossRefGoogle Scholar
  31. 31.
    Zhu, T., Li, J., Samanta, A., et al.: Temperature and strain-rate dependence of surface dislocation nucleation. Phys. Rev. Lett. 100, 025502 (2008)CrossRefGoogle Scholar
  32. 32.
    Zhou, Q., Xie, J.Y., Wang, F.: The mechanical behavior of nanoscale metallic multilayers: A survey. Acta Mech. Sin. 31, 319–337 (2015)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Centre of Advanced Mechanics and Materials, Department of Engineering MechanicsTsinghua UniversityBeijingChina
  2. 2.School of EngineeringBrown UniversityProvidenceUSA

Personalised recommendations