Acta Mechanica Sinica

, Volume 33, Issue 4, pp 823–832 | Cite as

Flow dynamics analyses of pathophysiological liver lobules using porous media theory

Research Paper


Blood flow inside the liver plays a key role in hepatic functions, and abnormal hemodynamics are highly correlated with liver diseases. To date, the flow field in an elementary building block of the organ, the liver lobule, is difficult to determine experimentally in humans due to its complicated structure, with radially branched microvasculature and the technical difficulties that derive from its geometric constraints. Here we established a set of 3D computational models for a liver lobule using porous media theory and analyzed its flow dynamics in normal, fibrotic, and cirrhotic lobules. Our simulations indicated that those approximations of ordinary flow in portal tracts (PTs) and the central vein, and of porous media flow in the sinusoidal network, were reasonable only for normal or fibrotic lobules. Models modified with high resistance in PTs and collateral vessels inside sinusoids were able to describe the flow features in cirrhotic lobules. Pressures, average velocities, and volume flow rates were profiled and the predictions compared well with experimental data. This study furthered our understanding of the flow dynamics features of liver lobules and the differences among normal, fibrotic, and cirrhotic lobules.


Cirrhotic liver Structural distortion Portal hypertension Collateral vessels 



This work was supported by the National Natural Science Foundation of China (Grants 31230027, 91642203, and 31661143044) and the Frontier Science Key Project of Chinese Science Academy (Grant QYZDJ-SSW-JSC018).


  1. 1.
    Wong, J., Johnston, B., Lee, S.S., et al.: A minimal role for selectins in the recruitment of leukocytes into the inflamed liver microvasculature. J. Clin. Invest. 99, 2782–2790 (1997)CrossRefGoogle Scholar
  2. 2.
    Li, N., Lu, S.Q., Zhang, Y., et al.: Mechanokinetics of receptor-ligand interactions in cell adhesion. Acta Mech. Sin. 31, 248–258 (2015)Google Scholar
  3. 3.
    Sato, Y., Tsukada, K., Hatakeyama, K.: Role of shear stress and immune responses in liver regeneration after a partial hepatectomy. Surg. Today 29, 1–9 (1999)CrossRefGoogle Scholar
  4. 4.
    Monga, S.P.S.: Molecular Pathology of Liver Diseases. Springer Science & Business Media, Berlin (2011)CrossRefGoogle Scholar
  5. 5.
    Schuppan, D., Afdhal, N.H.: Liver cirrhosis. Lancet 371, 838–851 (2008)CrossRefGoogle Scholar
  6. 6.
    Tsochatzis, E.A., Bosch, J., Burroughs, A.K.: Liver cirrhosis. Lancet 383, 1749–1761 (2014)CrossRefGoogle Scholar
  7. 7.
    Rappaport, A., Borowy, Z., Lougheed, W., et al.: Subdivision of hexagonal liver lobules into a structural and functional unit. Role in hepatic physiology and pathology. Anat. Rec. 119, 11–33 (1954)CrossRefGoogle Scholar
  8. 8.
    Kiernan, F.: The anatomy and physiology of the liver. Philos. Trans. R. Soc. Lond. 123, 711–770 (1833)CrossRefGoogle Scholar
  9. 9.
    Debbaut, C., Vierendeels, J., Casteleyn, C., et al.: Perfusion characteristics of the human hepatic microcirculation based on 3D reconstructions and computational fluid dynamic analysis. J. Biomech. Eng. 134, 011003 (2012)CrossRefGoogle Scholar
  10. 10.
    Bataller, R., Brenner, D.A.: Liver fibrosis. J. Clin. Invest. 115, 209–218 (2005)Google Scholar
  11. 11.
    Sharma, M., Rameshbabu, C.S.: Collateral pathways in portal hypertension. J. Clin. Exp. Hepatol. 2, 338–352 (2012)CrossRefGoogle Scholar
  12. 12.
    Groszmann, R.J., Glickman, M., Blei, A.T., et al.: Wedged and free hepatic venous pressure measured with a balloon catheter. Gastroenterology 76, 253–258 (1979)Google Scholar
  13. 13.
    Yzet, T., Bouzerar, R., Baledent, O., et al.: Dynamic measurements of total hepatic blood flow with Phase Contrast MRI. Eur. J. Radiol. 73, 119–124 (2010)CrossRefGoogle Scholar
  14. 14.
    Genzel-Boroviczény, O., Strötgen, J., Harris, A.G., et al.: Orthogonal polarization spectral imaging (OPS): a novel method to measure the microcirculation in term and preterm infants transcutaneously. Pediatr. Res. 51, 386–391 (2002)CrossRefGoogle Scholar
  15. 15.
    Puhl, G., Schaser, K.D., Vollmar, B., et al.: Noninvasive in vivo analysis of the human hepatic microcirculation using orthogonal polorization spectral imaging. Transplantation 75, 756–761 (2003)CrossRefGoogle Scholar
  16. 16.
    Nakata, M., Nakamura, K., Koda, Y., et al.: Alterations to hepatic microcirculation in thioacetamide-induced cirrhotic livers of rats. Osaka City Med. J. 48, 1–8 (2002)Google Scholar
  17. 17.
    Shibayama, Y., Nakata, K.: Localization of increased hepatic vascular resistance in liver cirrhosis. Hepatology 5, 643–648 (1985)CrossRefGoogle Scholar
  18. 18.
    Bonfiglio, A., Leungchavaphongse, K., Repetto, R., et al.: Mathematical modeling of the circulation in the liver lobule. J. Biomech. Eng. 132, 111011 (2010)CrossRefGoogle Scholar
  19. 19.
    Debbaut, C., Vierendeels, J., Siggers, J.H., et al.: A 3D porous media liver lobule model: the importance of vascular septa and anisotropic permeability for homogeneous perfusion. Comput. Method. Biomec. 17, 1295–1310 (2014)CrossRefGoogle Scholar
  20. 20.
    Eringen, A.C.: Continuum Physics. Vol III: Mixtures and Em Field Theories. Academic Press, London (1976)Google Scholar
  21. 21.
    Ricken, T., Dahmen, U., Dirsch, O.: A biphasic model for sinusoidal liver perfusion remodeling after outflow obstruction. Biomech. Model. Mechanobiol. 9, 435–450 (2010)CrossRefGoogle Scholar
  22. 22.
    Rani, H.P., Sheu, T.W., Chang, T.M., et al.: Numerical investigation of non-Newtonian microcirculatory blood flow in hepatic lobule. J. Biomech. 39, 551–563 (2006)CrossRefGoogle Scholar
  23. 23.
    Lettmann, K.A., Hardtke-Wolenski, M.: The importance of liver microcirculation in promoting autoimmune hepatitis via maintaining an inflammatory cytokine milieu-a mathematical model study. J. Theor. Biol. 348, 33–46 (2014)Google Scholar
  24. 24.
    Rezania, V., Coombe, D., Tuszynski, J.A.: A physiologically-based flow network model for hepatic drug elimination III: 2D/3D DLA lobule models. Theor. Biol. Med. Modell. 13, 1–22 (2016)CrossRefGoogle Scholar
  25. 25.
    Wambaugh, J., Shah, I.: Simulating microdosimetry in a virtual hepatic lobule. PLoS Comput. Biol. 6, e1000756 (2010)CrossRefGoogle Scholar
  26. 26.
    Nishii, K., Reese, G., Moran, E.C., et al.: Multiscale computational model of fluid flow and matrix deformation in decellularized liver. J. Mech. Behav. Biomed. Mater. 57, 201–214 (2016)CrossRefGoogle Scholar
  27. 27.
    Peeters, G., Debbaut, C., Cornillie, P., et al.: A multilevel modeling framework to study hepatic perfusion characteristics in case of liver cirrhosis. J. Biomech. Eng. 137, 051007 (2015)CrossRefGoogle Scholar
  28. 28.
    Maass-Moreno, R., Rothe, C.F.: Distribution of pressure gradients along hepatic vasculature. Am. J. Physiol Heart. C 272, H2826–H2832 (1997)Google Scholar
  29. 29.
    Noordergraaf, A., Li, J.K.-J., Campbell, K.B.: Mammalian hemodynamics: a new similarity principle. J. Theor. Biol. 79, 485–489 (1979)CrossRefGoogle Scholar
  30. 30.
    Yoneda, M., Yoneda, M., Mawatari, H., et al.: Noninvasive assessment of liver fibrosis by measurement of stiffness in patients with nonalcoholic fatty liver disease (NAFLD). Dig. Liver Dis. 40, 371–378 (2008)CrossRefGoogle Scholar
  31. 31.
    Dixon, J.B., Bhathal, P.S., O’brien, P.E.: Nonalcoholic fatty liver disease: predictors of nonalcoholic steatohepatitis and liver fibrosis in the severely obese. Gastroenterology 121, 91–100 (2001)CrossRefGoogle Scholar
  32. 32.
    Schiff, E.R., Sorrell, M.F., Maddrey, W.C.: Schiff’s Diseases of the Liver. Lippincott Williams & Wilkins, Philadelphia (2007)Google Scholar
  33. 33.
    Hubscher, S.G., Burt, A.D., Portmann, B.C., et al.: MacSween’s Pathology of the Liver. Elsevier Health Sciences, Amsterdam (2011)Google Scholar
  34. 34.
    Sturesson, C., Milstein, D.M., Post, I.C., et al.: Laser speckle contrast imaging for assessment of liver microcirculation. Microvasc. Res. 87, 34–40 (2013)CrossRefGoogle Scholar
  35. 35.
    Siggers, J.H., Leungchavaphongse, K., Ho, C.H., et al.: Mathematical model of blood and interstitial flow and lymph production in the liver. Biomech. Model. Mechanobiol. 13, 363–378 (2014)CrossRefGoogle Scholar
  36. 36.
    West, G.B., Brown, J.H., Enquist, B.J.: A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997)CrossRefGoogle Scholar
  37. 37.
    Koo, A., Liang, I.Y., Cheng, K.-K.: Effect of the ligation of hepatic artery on the microcirculation in the cirrhotic liver in the rat. Aust. J. Exp. Biol. Med. Sci. 54, 287–295 (1976)CrossRefGoogle Scholar
  38. 38.
    Macphee, P., Schmidt, E., Groom, A.: Intermittence of blood flow in liver sinusoids, studied by high-resolution in vivo microscopy. Am. J. Physiol. Gastrl. 269, G692–G698 (1995)Google Scholar
  39. 39.
    Pan, Z., Wu, X.-J., Li, J.-S., et al.: Functional hepatic flow in patients with liver cirrhosis. World J. Gastroenterol. 10, 915–918 (2004)Google Scholar
  40. 40.
    Shaldon, S., Chiandussi, L., Guevara, L., et al.: The estimation of hepatic blood flow and intrahepatic shunted blood flow by colloidal heat-denatured human serum albumin labeled with I131. J. Clin. Invest. 40, 1346 (1961)CrossRefGoogle Scholar
  41. 41.
    Dancygier, H.: Clinical Hepatology: Principles and Practice of Hepatobiliary Diseases. Springer Science & Business Media, Berlin (2009)Google Scholar
  42. 42.
    Du, Y., Li, N., Yang, H., et al.: Mimicking liver sinusoidal structures and functions using a 3D-configured microfluidic chip. Lab. Chip. 17, 782–794 (2017)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Jinrong Hu
    • 1
    • 2
  • Shouqin Lü
    • 1
    • 2
  • Shiliang Feng
    • 1
  • Mian Long
    • 1
    • 2
  1. 1.Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of MechanicsChinese Academy of SciencesBeijingChina
  2. 2.School of Engineering ScienceUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations