Skip to main content
Log in

Adaptive nonlinear model predictive control design of a flexible-link manipulator with uncertain parameters

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

This paper presents a novel adaptive nonlinear model predictive control design for trajectory tracking of flexible-link manipulators consisting of feedback linearization, linear model predictive control, and unscented Kalman filtering. Reducing the nonlinear system to a linear system by feedback linearization simplifies the optimization problem of the model predictive controller significantly, which, however, is no longer linear in the presence of parameter uncertainties and can potentially lead to an undesired dynamical behaviour. An unscented Kalman filter is used to approximate the dynamics of the prediction model by an online parameter estimation, which leads to an adaptation of the optimization problem in each time step and thus to a better prediction and an improved input action. Finally, a detailed fuzzy-arithmetic analysis is performed in order to quantify the effect of the uncertainties on the control structure and to derive robustness assessments. The control structure is applied to a serial manipulator with two flexible links containing uncertain model parameters and acting in three-dimensional space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Devasia, S., Chen, D., Paden, B.: Nonlinear inversion-based output tracking. IEEE Trans. Autom. Control 41, 930–942 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Luca, A.D., Siciliano, B.: Inversion-based nonlinear control of robot arms with flexible links. J. Guid. Control Dyn. 16, 1169–1176 (1993)

    Article  MATH  Google Scholar 

  3. Isidori, A.: Nonlinear Control Systems. Springer, London (1995)

    Book  MATH  Google Scholar 

  4. Sastry, S., Isidori, A.: Adaptive control of linearizable systems. IEEE Trans. Autom. Control 34, 1123–1131 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Slotine, J.-J.E., Hedrick, J.K.: Robust input–output feedback linearization. Int. J. Control 57, 1133–1139 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Slotine, J.-J.E., Li, W.: On the adaptive control of robot manipulators. Int. J. Rob. Res. 6, 49–59 (1987)

    Article  Google Scholar 

  7. Sage, H., De Mathelin, M., Ostertag, E.: Robust control of robot manipulators: a survey. Int. J. Control 72, 1498–1522 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Morari, M., Lee, J.H.: Model predictive control: past, present and future. Comput. Chem. Eng. 23, 667–682 (1999)

    Article  Google Scholar 

  9. Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Eng. Pract. 11, 733–764 (2003)

    Article  Google Scholar 

  10. Hedjar, R., Boucher, P.: Nonlinear receding-horizon control of rigid link robot manipulators. Int. J. Adv. Rob. Syst. 2, 15–24 (2005)

    Article  Google Scholar 

  11. Boscariol, P., Gasparetto, A., Zanotto, V.: Model predictive control of a flexible links mechanism. J. Intell. Rob. Syst. 58, 125–147 (2010)

    Article  MATH  Google Scholar 

  12. Hassan, M., Dubay, R., Li, C., et al.: Active vibration control of a flexible one-link manipulator using a multivariable predictive controller. Mechatronics 17, 311–323 (2007)

    Article  Google Scholar 

  13. Bossi, L., Rottenbacher, C., Mimmi, G., et al.: Multivariable predictive control for vibrating structures: an application. Control Eng. Pract. 19, 1087–1098 (2011)

    Article  Google Scholar 

  14. Bemporad, A., Morari, M.: Robust model predictive control: a survey. In: Robustness in Identification and Control. Springer, 207–266 (1999)

  15. Fukushima, H., Kim, T.-H., Sugie, T.: Adaptive model predictive control for a class of constrained linear systems based on the comparison model. Automatica 43, 301–308 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chowdhary, G., Mühlegg, M., How, J.P., et al.: Concurrent learning adaptive model predictive control. In: Advances in Aerospace Guidance, Navigation and Control, Springer, 29–47 (2013)

  17. Takacs, G., Poloni, T., Rohal-Ilkiv, B.: Adaptive model predictive vibration control of a cantilever beam with real-tme parameter estimation. Shock Vib. 2014, 1–15 (2014)

    Article  Google Scholar 

  18. Pradhan, S.K., Subudhi, B.: Nonlinear adaptive model predictive controller for a flexible manipulator: an experimental study. IEEE Trans. Control Syst. Technol. 22, 1754–1768 (2014)

    Article  Google Scholar 

  19. Hanss, M.: Applied Fuzzy Arithmetic—An Introduction with Engineering Applications. Springer, Berlin (2005)

    MATH  Google Scholar 

  20. Shabana, A.: Flexible multibody dynamics: review of past and recent developments. Multibody Syst. Dyn. 1, 189–222 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lehner, M.: Modellreduktion in elastischen mehrkörpersystemen. [Ph.D. Thesis], Schriften aus dem Institut für Technische und Numerische Mechanik der Universität Stuttgart, Vol. 10, Shaker Verlag, Aachen (in German) (2007)

  22. Wallrapp, O.: Standardization of flexible body modeling in multibody system codes, part I: definition of standard input data. Mech. Struct. Mach. 22, 283–304 (1994)

  23. Blajer, W., Kołodziejczyk, K.: A geometric approach to solving problems of control constraints: theory and a dae framework. Multibody Syst. Dyn. 11, 343–364 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Altmann, R., Betsch, P., Yang, Y.: Index reduction by minimal extension for the inverse dynamics simulation of cranes. Multibody Syst. Dyn. 11, 295–321 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Seifried, R., Burkhardt, M., Held, A.: Trajectory control of flexible manipulator using model inversion. In: Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2011, Belgium, Brussels (2011)

  26. Seifried, R.: Dynamics of Underactuated Multibody Systems—Modeling, Control and Optimal Design: Analysis, Stability and Control. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  27. Sastry, S.: Nonlinear Systems: Analysis, Stability and Control. Springer, New York (1999)

    Book  MATH  Google Scholar 

  28. Maciejowski, J.M.: Predictive Control with Constraints. Prentice Hall, Upper Saddle River (2002)

    MATH  Google Scholar 

  29. Kurtz, M.J., Henson, M.A.: Input–output linearizing control of constrained nonlinear processes. J. Process Control 7, 3–17 (1997)

    Article  Google Scholar 

  30. Schnelle, F., Eberhard, P.: Constraint mapping in a feedback linearization/mpc scheme for trajectory tracking of underactuated multibody systems. In: Proceedings of the 5th IFAC Conference on Nonlinear Model Predictive Control (NMPC 2015), Seville, 446–451 (2015)

  31. Schnelle, F., Eberhard, P.: Adaptive model predictive control design for underactuated multibody systems with uncertain parameters. In: ROMANSY 21—Robot Design, Dynamics and Control, Springer, 145–152 (2016)

  32. Wan, E., Van Der Merwe, R.: The unscented Kalman filter for nonlinear estimation. In: Adaptive Systems for Signal Processing, Communications, and Control Symposium 2000. AS-SPCC. The IEEE 2000, 153–158 (2000)

  33. Julier, S.J., Uhlmann, J.K.: New extension of the Kalman filter to nonlinear systems. In: AeroSense’97, International Society for Optics and Photonics, 182–193 (1997)

  34. Walz, N.-P., Hanss, M.: Fuzzy arithmetical analysis of multibody systems with uncertainties. Arch. Mech. Eng. 60, 109–125 (2013)

    Google Scholar 

  35. Wasfy, T.M., Noor, A.K.: Finite element analysis of flexible multibody systems with fuzzy parameters. Comput. Methods Appl. Mech. Eng. 160, 223–243 (1998)

    Article  MATH  Google Scholar 

  36. Walz, N.-P., Burkhardt, M., Eberhard, P., et al.: A comprehensive fuzzy uncertainty analysis of a controlled nonlinear system with unstable internal dynamics. ASCE ASME J. Risk Uncertain. Eng. Syst. Part B Mech. Eng. 1, 041008 (2015)

    Article  Google Scholar 

  37. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  MATH  Google Scholar 

  38. Hanss, M.: The transformation method for the simulation and analysis of systems with uncertain parameters. Fuzzy Sets Syst. 130, 277–289 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  39. Gauger, U., Turrin, S., Hanss, M., et al.: A new uncertainty analysis for the transformation method. Fuzzy Sets Syst. 159, 1273–1291 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lee, C.-C.: Fuzzy logic in control systems: fuzzy logic controller. II. IEEE Trans. Syst. Man Cybern. 20, 419–435 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Schnelle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schnelle, F., Eberhard, P. Adaptive nonlinear model predictive control design of a flexible-link manipulator with uncertain parameters. Acta Mech. Sin. 33, 529–542 (2017). https://doi.org/10.1007/s10409-017-0669-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-017-0669-4

Keywords

Navigation