Acta Mechanica Sinica

, Volume 33, Issue 3, pp 555–574 | Cite as

Lattice Boltzmann modeling of transport phenomena in fuel cells and flow batteries

Review Paper

Abstract

Fuel cells and flow batteries are promising technologies to address climate change and air pollution problems. An understanding of the complex multiscale and multiphysics transport phenomena occurring in these electrochemical systems requires powerful numerical tools. Over the past decades, the lattice Boltzmann (LB) method has attracted broad interest in the computational fluid dynamics and the numerical heat transfer communities, primarily due to its kinetic nature making it appropriate for modeling complex multiphase transport phenomena. More importantly, the LB method fits well with parallel computing due to its locality feature, which is required for large-scale engineering applications. In this article, we review the LB method for gas–liquid two-phase flows, coupled fluid flow and mass transport in porous media, and particulate flows. Examples of applications are provided in fuel cells and flow batteries. Further developments of the LB method are also outlined.

Keywords

Lattice Boltzmann method Transport phenomena Multiphase flow Fuel cells Flow batteries 

References

  1. 1.
    Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329–364 (1998)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Aidun, C.K., Clausen, J.R.: Lattice-Boltzmann method for complex flows. Annu. Rev. Fluid Mech. 42, 439–472 (2010)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Guo, Z., Shu, C.: Lattice Boltzmann Method and Its Applications in Engineering. World Scientific, Singapore (2013)MATHCrossRefGoogle Scholar
  4. 4.
    Guo, Z., Zheng, C.: Theory and Applications of Lattice Boltzmann Method. Science Press, Beijing (2009)Google Scholar
  5. 5.
    He, Y., Wang, Y., Li, Q., et al.: Lattice Boltzmann Method: Theory and Applications. Science Press, Beijing (2009)Google Scholar
  6. 6.
    He, Y., Li, Q., Wang, Y., et al.: Lattice Boltzmann method and its applications in engineering thermophysics. Chin. Sci. Bull. 54, 4117–4134 (2009)CrossRefGoogle Scholar
  7. 7.
    Succi, S.: Lattice Boltzmann 2038. EPL 109, 50001 (2015)CrossRefGoogle Scholar
  8. 8.
    Huang, H., Sukop, M.C., Lu, X.-Y., et al.: Multiphase Lattice Boltzmann Methods: Theory and Application. Wiley, New York (2015)CrossRefGoogle Scholar
  9. 9.
    Li, Q., Luo, K., Kang, Q., et al.: Lattice Boltzmann methods for multiphase flow and phase-change heat transfer. Prog. Energy Combust. Sci. 52, 62–105 (2016)CrossRefGoogle Scholar
  10. 10.
    Yu, D., Mei, R., Luo, L.-S., et al.: Viscous flow computations with the method of lattice Boltzmann equation. Prog. Aeosp. Sci. 39, 329–367 (2003)CrossRefGoogle Scholar
  11. 11.
    Jiao, K., Li, X.: Water transport in polymer electrolyte membrane fuel cells. Prog. Energy Combust. Sci. 37, 221–291 (2011)CrossRefGoogle Scholar
  12. 12.
    Mukherjee, P.P., Kang, Q., Wang, C.-Y., et al.: Pore-scale modeling of two-phase transport in polymer electrolyte fuel cells—progress and perspective. Energy Environ. Sci. 4, 346–369 (2011)CrossRefGoogle Scholar
  13. 13.
    Zhao, T., Xu, C., Chen, R., et al.: Mass transport phenomena in direct methanol fuel cells. Prog. Energy Combust. Sci. 35, 275–292 (2009)CrossRefGoogle Scholar
  14. 14.
    Xu, Q., Zhao, T.: Fundamental models for flow batteries. Prog. Energy Combust. Sci. 49, 40–58 (2015)CrossRefGoogle Scholar
  15. 15.
    Yang, Z., Zhang, J., Kintner-Meyer, M.C., et al.: Electrochemical energy storage for green grid. Chem. Rev. 111, 3577–3613 (2011)CrossRefGoogle Scholar
  16. 16.
    Hatzell, K.B., Boota, M., Gogotsi, Y., et al.: Materials for suspension (semi-solid) electrodes for energy and water technologies. Chem. Soc. Rev. 44, 8664–8687 (2015)CrossRefGoogle Scholar
  17. 17.
    Wolfram, S.: Statistical mechanics of cellular automata. Rev. Mod. Phys. 55, 601 (1983)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Frisch, U., Hasslacher, B., Pomeau, Y., et al.: Lattice-gas automata for the Navier–Stokes equation. Phys. Rev. Lett. 56, 1505 (1986)CrossRefGoogle Scholar
  19. 19.
    McNamara, G.R., Zanetti, G.: Use of the Boltzmann equation to simulate lattice-gas automata. Phys. Rev. Lett. 61, 2332 (1988)CrossRefGoogle Scholar
  20. 20.
    Qian, Y., D’Humières, D., Lallemand, P., et al.: Lattice BGK models for Navier–Stokes equation. EPL 17, 479–484 (1992)MATHCrossRefGoogle Scholar
  21. 21.
    He, X., Luo, L.-S.: Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E 56, 6811 (1997)CrossRefGoogle Scholar
  22. 22.
    Bhatnagar, P.L., Gross, E., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525 (1954)Google Scholar
  23. 23.
    Xu, K.: Direct Modeling for Computational Fluid Dynamics, vol. 4. World Scientific, Singapore (2015)MATHGoogle Scholar
  24. 24.
    Xu, K.: Direct modeling for computational fluid dynamics. Acta Mech. Sin. 31, 303–318 (2015)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Lallemand, P., Luo, L.-S.: Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E 61, 6546 (2000)MathSciNetCrossRefGoogle Scholar
  26. 26.
    d’Humières, D.: Multiple-relaxation-time lattice Boltzmann models in three dimensions. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 360, 437–451 (2002)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Huang, H., Krafczyk, M., Lu, X., et al.: Forcing term in single-phase and Shan–Chen-type multiphase lattice Boltzmann models. Phys. Rev. E 84, 046710 (2011)CrossRefGoogle Scholar
  28. 28.
    Guo, Z., Zheng, C., Shi, B., et al.: Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys. Rev. E 65, 046308 (2002)MATHCrossRefGoogle Scholar
  29. 29.
    Guo, Z., Zheng, C.: Analysis of lattice Boltzmann equation for microscale gas flows: relaxation times, boundary conditions and the Knudsen layer. Int. J. Comput. Fluid Dyn. 22, 465–473 (2008)Google Scholar
  30. 30.
    Tölke, J., Krafczyk, M.: TeraFLOP computing on a desktop PC with GPUs for 3D CFD. Int. J. Comput. Fluid Dyn. 22, 443–456 (2008)MATHCrossRefGoogle Scholar
  31. 31.
    Delbosc, N., Summers, J., Khan, A., et al.: Optimized implementation of the lattice Boltzmann method on a graphics processing unit towards real-time fluid simulation. Comput. Math. Appl. 67, 462–475 (2014)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Lin, L.-S., Chang, H.-W., Lin, C.-A., et al.: Multi relaxation time lattice Boltzmann simulations of transition in deep 2D lid driven cavity using GPU. Comput. Fluids 80, 381–387 (2013)CrossRefGoogle Scholar
  33. 33.
    Chang, H.-W., Hong, P.-Y., Lin, L.-S., et al.: Simulations of flow instability in three dimensional deep cavities with multi relaxation time lattice Boltzmann method on graphic processing units. Comput. Fluids 88, 866–871 (2013)CrossRefGoogle Scholar
  34. 34.
    Huang, C., Shi, B., He, N., et al.: Implementation of multi-GPU based lattice Boltzmann method for flow through porous media. Adv. Appl. Math. Mech. 7, 1–12 (2015)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Huang, C., Shi, B., Guo, Z., et al.: Multi-GPU based lattice Boltzmann method for hemodynamic simulation in patient-specific cerebral aneurysm. Commun. Comput. Phys. 17, 960–974 (2015)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Xu, A., Shi, L., Zhao, T., et al.: Accelerated lattice Boltzmann simulation using GPU and OpenACC with data management. Int. J. Heat Mass Transf. 109, 577–588 (2017)CrossRefGoogle Scholar
  37. 37.
    Gunstensen, A.K., Rothman, D.H., Zaleski, S., et al.: Lattice Boltzmann model of immiscible fluids. Phys. Rev. A 43, 4320 (1991)CrossRefGoogle Scholar
  38. 38.
    Grunau, D., Chen, S., Eggert, K., et al.: A lattice Boltzmann model for multiphase fluid flows. Phys. Fluids 5, 2557–2562 (1993)MATHCrossRefGoogle Scholar
  39. 39.
    Shan, X., Chen, H.: Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 47, 1815 (1993)CrossRefGoogle Scholar
  40. 40.
    Shan, X., Chen, H.: Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. Phys. Rev. E 49, 2941 (1994)CrossRefGoogle Scholar
  41. 41.
    Swift, M.R., Osborn, W., Yeomans, J., et al.: Lattice Boltzmann simulation of nonideal fluids. Phys. Rev. Lett. 75, 830 (1995)CrossRefGoogle Scholar
  42. 42.
    Swift, M.R., Orlandini, E., Osborn, W., et al.: Lattice boltzmann simulations of liquid-gas and binary fluid systems. Phys. Rev. E 54, 5041 (1996)CrossRefGoogle Scholar
  43. 43.
    He, X., Chen, S., Zhang, R., et al.: A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh–Taylor instability. J. Comput. Phys. 152, 642–663 (1999)MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Rothman, D.H., Keller, J.M.: Immiscible cellular-automaton fluids. J. Stat. Phys. 52, 1119–1127 (1988)MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    Huang, H., Huang, J.-J., Lu, X.-Y., et al.: On simulations of high density ratio flows using color-gradient multiphase lattice Boltzmann models. Int. J. Mod. Phys. C 24, 1350021 (2013)CrossRefGoogle Scholar
  46. 46.
    Huang, H., Huang, J.-J., Lu, X.-Y., et al.: Study of immiscible displacements in porous media using a color-gradient-based multiphase lattice Boltzmann method. Comput. Fluids 93, 164–172 (2014)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Ba, Y., Liu, H., Li, Q., et al.: Multiple-relaxation-time color-gradient lattice Boltzmann model for simulating two-phase flows with high density ratio. Phys. Rev. E 94, 023310 (2016)CrossRefGoogle Scholar
  48. 48.
    Yuan, P., Schaefer, L.: Equations of state in a lattice Boltzmann model. Phys. Fluids 18, 042101 (2006)MathSciNetMATHCrossRefGoogle Scholar
  49. 49.
    Shan, X.: Analysis and reduction of the spurious current in a class of multiphase lattice Boltzmann models. Phys. Rev. E 73, 047701 (2006)CrossRefGoogle Scholar
  50. 50.
    Sbragaglia, M., Benzi, R., Biferale, L., et al.: Generalized lattice Boltzmann method with multirange pseudopotential. Phys. Rev. E 75, 026702 (2007)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Kupershtokh, A., Medvedev, D., Karpov, D., et al.: On equations of state in a lattice Boltzmann method. Comput. Math. Appl. 58, 965–974 (2009)MathSciNetMATHCrossRefGoogle Scholar
  52. 52.
    Gong, S., Cheng, P.: Numerical investigation of droplet motion and coalescence by an improved lattice Boltzmann model for phase transitions and multiphase flows. Comput. Fluids 53, 93–104 (2012)MathSciNetMATHCrossRefGoogle Scholar
  53. 53.
    Li, Q., Luo, K., Li, X., et al.: Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows. Phys. Rev. E 86, 016709 (2012)CrossRefGoogle Scholar
  54. 54.
    Li, Q., Luo, K., Li, X., et al.: Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model. Phys. Rev. E 87, 053301 (2013)CrossRefGoogle Scholar
  55. 55.
    Li, Q., Luo, K.: Achieving tunable surface tension in the pseudopotential lattice Boltzmann modeling of multiphase flows. Phys. Rev. E 88, 053307 (2013)CrossRefGoogle Scholar
  56. 56.
    Xu, A., Zhao, T., An, L., et al.: A three-dimensional pseudo-potential-based lattice Boltzmann model for multiphase flows with large density ratio and variable surface tension. Int. J. Heat Fluid Flow 56, 261–271 (2015)CrossRefGoogle Scholar
  57. 57.
    Li, Q., Zhou, P., Yan, H., et al.: Revised Chapman–Enskog analysis for a class of forcing schemes in the lattice Boltzmann method. Phys. Rev. E 94, 043313 (2016)CrossRefGoogle Scholar
  58. 58.
    Reijers, S., Gelderblom, H., Toschi, F., et al.: Axisymmetric multiphase lattice Boltzmann method for generic equations of state. J. Comput. Sci. 17, 309–314 (2016)MathSciNetCrossRefGoogle Scholar
  59. 59.
    Inamuro, T., Konishi, N., Ogino, F., et al.: A galilean invariant model of the lattice Boltzmann method for multiphase fluid flows using free-energy approach. Comput. Phys. Commun. 129, 32–45 (2000)MathSciNetMATHCrossRefGoogle Scholar
  60. 60.
    Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)CrossRefGoogle Scholar
  61. 61.
    Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid. J. Chem. Phys. 31, 688–699 (1959)CrossRefGoogle Scholar
  62. 62.
    Allen, S.M., Cahn, J.W.: Mechanisms of phase transformations within the miscibility gap of Fe-rich Fe–Al alloys. Acta Metall. 24, 425–437 (1976)CrossRefGoogle Scholar
  63. 63.
    Wang, H., Chai, Z., Shi, B., et al.: Comparative study of the lattice Boltzmann models for Allen–Cahn and Cahn–Hilliard equations. Phys. Rev. E 94, 033304 (2016)CrossRefGoogle Scholar
  64. 64.
    Inamuro, T., Ogata, T., Tajima, S., et al.: A lattice Boltzmann method for incompressible two-phase flows with large density differences. J. Comput. Phys. 198, 628–644 (2004)MATHCrossRefGoogle Scholar
  65. 65.
    Lee, T., Lin, C.-L.: A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio. J. Comput. Phys. 206, 16–47 (2005)MathSciNetMATHCrossRefGoogle Scholar
  66. 66.
    Huang, H., Zheng, H., Lu, X.-Y., et al.: An evaluation of a 3D free-energybased lattice Boltzmann model for multiphase flows with large density ratio. Int. J. Numer. Methods Fluids 63, 1193–1207 (2010)MATHGoogle Scholar
  67. 67.
    Shao, J., Shu, C., Huang, H., et al.: Free-energy-based lattice Boltzmann model for the simulation of multiphase flows with density contrast. Phys. Rev. E 89, 033309 (2014)CrossRefGoogle Scholar
  68. 68.
    Huang, H., Huang, J.-J., Lu, X.-Y., et al.: A mass-conserving axisymmetric multiphase lattice Boltzmann method and its application in simulation of bubble rising. J. Comput. Phys. 269, 386–402 (2014)MathSciNetMATHCrossRefGoogle Scholar
  69. 69.
    Liang, H., Chai, Z., Shi, B., et al.: Phase-field-based lattice Boltzmann model for axisymmetric multiphase flows. Phys. Rev. E 90, 063311 (2014)CrossRefGoogle Scholar
  70. 70.
    Li, Q., Luo, K., Gao, Y., et al.: Additional interfacial force in lattice Boltzmann models for incompressible multiphase flows. Phys. Rev. E 85, 026704 (2012)CrossRefGoogle Scholar
  71. 71.
    Liang, H., Shi, B., Guo, Z., et al.: Phase-field-based multiple-relaxationtime lattice Boltzmann model for incompressible multiphase flows. Phys. Rev. E 89, 053320 (2014)CrossRefGoogle Scholar
  72. 72.
    Wang, L., Huang, H.-B., Lu, X.-Y., et al.: Scheme for contact angle and its hysteresis in a multiphase lattice Boltzmann method. Phys. Rev. E 87, 013301 (2013)CrossRefGoogle Scholar
  73. 73.
    Huang, J.-J., Huang, H., Wang, X., et al.: Numerical study of drop motion on a surface with stepwise wettability gradient and contact angle hysteresis. Phys. Fluids 26, 062101 (2014)CrossRefGoogle Scholar
  74. 74.
    Huang, J.-J., Huang, H., Wang, X., et al.: Wetting boundary conditions in numerical simulation of binary fluids by using phase-field method: some comparative studies and new development. Int. J. Numer. Methods Fluids 77, 123–158 (2015)MathSciNetCrossRefGoogle Scholar
  75. 75.
    Liang, H., Shi, B., Chai, Z., et al.: Lattice Boltzmann modeling of three-phase incompressible flows. Phys. Rev. E 93, 013308 (2016)CrossRefGoogle Scholar
  76. 76.
    Chao, J., Mei, R., Singh, R., et al.: A filter-based, mass-conserving lattice Boltzmann method for immiscible multiphase flows. Int. J. Numer. Methods Fluids 66, 622–647 (2011)MathSciNetMATHCrossRefGoogle Scholar
  77. 77.
    Huang, H., Wang, L., Lu, X.-Y., et al.: Evaluation of three lattice Boltzmann models for multiphase flows in porous media. Comput. Math. Appl. 61, 3606–3617 (2011)MathSciNetMATHCrossRefGoogle Scholar
  78. 78.
    Cheng, P., Quan, X., Gong, S., et al.: Chapter four-recent analytical and numerical studies on phase-change heat transfer. Adv. Heat Transf. 46, 187–248 (2014)CrossRefGoogle Scholar
  79. 79.
    Gong, S., Cheng, P.: A lattice Boltzmann method for simulation of liquid-vapor phase-change heat transfer. Int. J. Heat Mass Transf. 55, 4923–4927 (2012)CrossRefGoogle Scholar
  80. 80.
    Li, Q., Kang, Q., Francois, M., et al.: Lattice Boltzmann modeling of boiling heat transfer: the boiling curve and the effects of wettability. Int. J. Heat Mass Transf. 85, 787–796 (2015)CrossRefGoogle Scholar
  81. 81.
    Chai, Z.-H., Zhao, T.-S.: A pseudopotential-based multiple-relaxationtime lattice Boltzmann model for multicomponent/multiphase flows. Acta Mech. Sin. 28, 983–992 (2012)MathSciNetMATHCrossRefGoogle Scholar
  82. 82.
    Sukop, M.C., Huang, H., Lin, C.L., et al.: Distribution of multiphase fluids in porous media: comparison between lattice Boltzmann modeling and micro-X-ray tomography. Phys. Rev. E 77, 026710 (2008)CrossRefGoogle Scholar
  83. 83.
    Huang, H., Li, Z., Liu, S., et al.: Shan-and-chen-type multiphase lattice Boltzmann study of viscous coupling effects for two-phase flow in porous media. Int. J. Numer. Methods Fluids 61, 341–354 (2009)MathSciNetMATHCrossRefGoogle Scholar
  84. 84.
    Huang, H., Lu, X.-Y.: Relative permeabilities and coupling effects in steadystate gas-liquid flow in porous media: a lattice Boltzmann study. Phys. Fluids 21, 092104 (2009)MATHCrossRefGoogle Scholar
  85. 85.
    Chen, L., Kang, Q., Mu, Y., et al.: A critical review of the pseudopotential multiphase lattice Boltzmann model: methods and applications. Int. J. Heat Mass Transf. 76, 210–236 (2014)CrossRefGoogle Scholar
  86. 86.
    Shan, X.: Pressure tensor calculation in a class of nonideal gas lattice Boltzmann models. Phys. Rev. E 77, 066702 (2008)CrossRefGoogle Scholar
  87. 87.
    Li, Q., Luo, K.: Thermodynamic consistency of the pseudopotential lattice Boltzmann model for simulating liquid-vapor flows. Appl. Therm. Eng. 72, 56–61 (2014)CrossRefGoogle Scholar
  88. 88.
    Li, Q., Luo, K.: Effect of the forcing term in the pseudopotential lattice Boltzmann modeling of thermal flows. Phys. Rev. E 89, 053022 (2014)CrossRefGoogle Scholar
  89. 89.
    Martys, N.S., Chen, H.: Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method. Phys. Rev. E 53, 743 (1996)CrossRefGoogle Scholar
  90. 90.
    Kang, Q., Zhang, D., Chen, S., et al.: Displacement of a two-dimensional immiscible droplet in a channel. Phys. Fluids 14, 3203–3214 (2002)MATHCrossRefGoogle Scholar
  91. 91.
    Benzi, R., Biferale, L., Sbragaglia, M., et al.: Mesoscopic modeling of a two-phase flow in the presence of boundaries: the contact angle. Phys. Rev. E 74, 021509 (2006)MathSciNetCrossRefGoogle Scholar
  92. 92.
    Li, Q., Luo, K., Kang, Q., et al.: Contact angles in the pseudopotential lattice Boltzmann modeling of wetting. Phys. Rev. E 90, 053301 (2014)CrossRefGoogle Scholar
  93. 93.
    Chai, Z., Zhao, T.: Effect of the forcing term in the multiple-relaxation-time lattice Boltzmann equation on the shear stress or the strain rate tensor. Phys. Rev. E 86, 016705 (2012)CrossRefGoogle Scholar
  94. 94.
    Huang, H., Thorne Jr., D.T., Schaap, M.G., et al.: Proposed approximation for contact angles in Shan-and-Chen-type multicomponent multiphase lattice Boltzmann models. Phys. Rev. E 76, 066701 (2007)CrossRefGoogle Scholar
  95. 95.
    Gong, S., Cheng, P.: Lattice Boltzmann simulation of periodic bubble nucleation, growth and departure from a heated surface in pool boiling. Int. J. Heat Mass Transf. 64, 122–132 (2013)CrossRefGoogle Scholar
  96. 96.
    Gong, S., Cheng, P.: Numerical simulation of pool boiling heat transfer on smooth surfaces with mixed wettability by lattice Boltzmann method. Int. J. Heat Mass Transf. 80, 206–216 (2015)CrossRefGoogle Scholar
  97. 97.
    Zhang, C., Cheng, P.: Mesoscale simulations of boiling curves and boiling hysteresis under constant wall temperature and constant heat flux conditions. Int. J. Heat Mass Transf. 110, 319–329 (2017)CrossRefGoogle Scholar
  98. 98.
    Li, Q., Kang, Q., Francois, M., et al.: Lattice Boltzmann modeling of self-propelled Leidenfrost droplets on ratchet surfaces. Soft Matter 12, 302–312 (2016)CrossRefGoogle Scholar
  99. 99.
    Li, Q., Zhou, P., Yan, H., et al.: Pinning–depinning mechanism of the contact line during evaporation on chemically patterned surfaces: a lattice Boltzmann study. Langmuir 32, 9389–9396 (2016)CrossRefGoogle Scholar
  100. 100.
    Lou, Q., Guo, Z., Shi, B., et al.: Evaluation of out flow boundary conditions for two-phase lattice Boltzmann equation. Phys. Rev. E 87, 063301 (2013)CrossRefGoogle Scholar
  101. 101.
    Li, L., Jia, X., Liu, Y., et al.: Modified outlet boundary condition schemes for large density ratio lattice Boltzmann models. J. Heat Transf. Trans. ASME 139, 052003 (2017)CrossRefGoogle Scholar
  102. 102.
    Nithiarasu, P., Seetharamu, K., Sundararajan, T., et al.: Natural convective heat transfer in a fluid saturated variable porosity medium. Int. J. Heat Mass Transf. 40, 3955–3967 (1997)MATHCrossRefGoogle Scholar
  103. 103.
    Guo, Z., Zhao, T.: Lattice Boltzmann model for incompressible flows through porous media. Phys. Rev. E 66, 036304 (2002)CrossRefGoogle Scholar
  104. 104.
    Guo, Z., Zhao, T.: A lattice Boltzmann model for convection heat transfer in porous media. Numer. Heat Transf. B Fundam. 47, 157–177 (2005)CrossRefGoogle Scholar
  105. 105.
    Liu, Q., He, Y.-L., Li, Q., et al.: A multiple-relaxation-time lattice Boltzmann model for convection heat transfer in porous media. Int. J. Heat Mass Transf. 73, 761–775 (2014)CrossRefGoogle Scholar
  106. 106.
    Wang, L., Mi, J., Guo, Z., et al.: A modified lattice Bhatnagar–Gross–Krook model for convection heat transfer in porous media. Int. J. Heat Mass Transf. 94, 269–291 (2016)CrossRefGoogle Scholar
  107. 107.
    Rong, F., Guo, Z., Chai, Z., et al.: A lattice Boltzmann model for axisymmetric thermal flows through porous media. Int. J. Heat Mass Transf. 53, 5519–5527 (2010)MATHCrossRefGoogle Scholar
  108. 108.
    Chai, Z., Guo, Z., Shi, B., et al.: Study of electro-osmotic flows in microchannels packed with variable porosity media via lattice Boltzmann method. J. Appl. Phys. 101, 104913 (2007)CrossRefGoogle Scholar
  109. 109.
    Mattila, K., Puurtinen, T., Hyväluoma, J., et al.: A prospect for computing in porous materials research: very large fluid flow simulations. J. Comput. Sci. 12, 62–76 (2016)CrossRefGoogle Scholar
  110. 110.
    Shi, B., Guo, Z.: Lattice Boltzmann model for nonlinear convection–diffusion equations. Phys. Rev. E 79, 016701 (2009)CrossRefGoogle Scholar
  111. 111.
    Li, Q., He, Y., Tang, G., et al.: Lattice Boltzmann model for axisymmetric thermal flows. Phys. Rev. E 80, 037702 (2009)CrossRefGoogle Scholar
  112. 112.
    Huang, H.-B., Lu, X.-Y., Sukop, M., et al.: Numerical study of lattice Boltzmann methods for a convection–diffusion equation coupled with Navier–Stokes equations. J. Phys. A Math. Theor. 44, 055001 (2011)MathSciNetMATHCrossRefGoogle Scholar
  113. 113.
    Li, Q., Luo, K., He, Y., et al.: Coupling lattice Boltzmann model for simulation of thermal flows on standard lattices. Phys. Rev. E 85, 016710 (2012)CrossRefGoogle Scholar
  114. 114.
    Wang, J., Wang, D., Lallemand, P., et al.: Lattice Boltzmann simulations of thermal convective flows in two dimensions. Comput. Math. Appl. 65, 262–286 (2013)MathSciNetMATHCrossRefGoogle Scholar
  115. 115.
    Chai, Z., Zhao, T.: Lattice Boltzmann model for the convection–diffusion equation. Phys. Rev. E 87, 063309 (2013)CrossRefGoogle Scholar
  116. 116.
    Chai, Z., Zhao, T.: Nonequilibrium scheme for computing the flux of the convection–diffusion equation in the framework of the lattice Boltzmann method. Phys. Rev. E 90, 013305 (2014)CrossRefGoogle Scholar
  117. 117.
    Li, Q., Chai, Z., Shi, B., et al.: An efficient lattice Boltzmann model for steady convection–diffusion equation. J. Sci. Comput. 61, 308–326 (2014)MathSciNetMATHCrossRefGoogle Scholar
  118. 118.
    Li, Q., Chai, Z., Shi, B., et al.: Lattice Boltzmann model for a class of convection–diffusion equations with variable coefficients. Comput. Math. Appl. 70, 548–561 (2015)MathSciNetCrossRefGoogle Scholar
  119. 119.
    Liu, Q., He, Y.-L., Li, D., et al.: Non-orthogonal multiple-relaxation-time lattice Boltzmann method for incompressible thermal flows. Int. J. Heat Mass Transf. 102, 1334–1344 (2016)Google Scholar
  120. 120.
    Guo, Z., Zhao, T., Shi, Y., et al.: A lattice Boltzmann algorithm for electro-osmotic flows in micro fluidic devices. J. Chem. Phys. 122, 144907 (2005)CrossRefGoogle Scholar
  121. 121.
    Wang, J., Wang, M., Li, Z., et al.: Lattice Poisson–Boltzmann simulations of electro-osmotic flows in microchannels. J. Colloid Interface Sci. 296, 729–736 (2006)CrossRefGoogle Scholar
  122. 122.
    Chai, Z., Shi, B.: Simulation of electro-osmotic flow in microchannel with lattice Boltzmann method. Phys. Lett. A 364, 183–188 (2007)MATHCrossRefGoogle Scholar
  123. 123.
    Chai, Z., Shi, B.: A novel lattice Boltzmann model for the Poisson equation. Appl. Math. Model. 32, 2050–2058 (2008)MathSciNetMATHCrossRefGoogle Scholar
  124. 124.
    Shi, Y., Zhao, T., Guo, Z., et al.: Simplified model and lattice Boltzmann algorithm for microscale electro-osmotic flows and heat transfer. Int. J. Heat Mass Transf. 51, 586–596 (2008)MATHCrossRefGoogle Scholar
  125. 125.
    Tang, G., He, Y., Tao, W., et al.: Numerical analysis of mixing enhancement for micro-electroosmotic flow. J. Appl. Phys. 107, 104906 (2010)CrossRefGoogle Scholar
  126. 126.
    Wang, M., Kang, Q.: Modeling electrokinetic flows in microchannels using coupled lattice Boltzmann methods. J. Comput. Phys. 229, 728–744 (2010)MathSciNetMATHCrossRefGoogle Scholar
  127. 127.
    Yang, X., Shi, B., Chai, Z., et al.: A coupled lattice Boltzmann method to solve Nernst–Planck model for simulating electro-osmotic flows. J. Sci. Comput. 61, 222–238 (2014)MathSciNetMATHCrossRefGoogle Scholar
  128. 128.
    Chai, Z., Shi, B., Guo, Z., et al.: A multiple-relaxation-time lattice Boltzmann model for general nonlinear anisotropic convection–diffusion equations. J. Sci. Comput. 69, 355–390 (2016)MathSciNetMATHCrossRefGoogle Scholar
  129. 129.
    Pan, C., Luo, L.-S., Miller, C.T., et al.: An evaluation of lattice Boltzmann schemes for porous medium flow simulation. Comput. Fluids 35, 898–909 (2006)MATHCrossRefGoogle Scholar
  130. 130.
    Chai, Z., Shi, B., Lu, J., et al.: Non-Darcy flow in disordered porous media: a lattice Boltzmann study. Comput. Fluids 39, 2069–2077 (2010)MathSciNetMATHCrossRefGoogle Scholar
  131. 131.
    Khabbazi, A.E., Ellis, J., Bazylak, A., et al.: Developing a new form of the Kozeny–Carman parameter for structured porous media through lattice-Boltzmann modeling. Comput. Fluids 75, 35–41 (2013)MATHCrossRefGoogle Scholar
  132. 132.
    Wang, M., He, J., Yu, J., et al.: Lattice Boltzmann modeling of the effective thermal conductivity for fibrous materials. Int. J. Therm. Sci. 46, 848–855 (2007)CrossRefGoogle Scholar
  133. 133.
    Wang, M., Wang, J., Pan, N., et al.: Mesoscopic predictions of the effective thermal conductivity for microscale random porous media. Phys. Rev. E 75, 036702 (2007)CrossRefGoogle Scholar
  134. 134.
    Wang, M., Pan, N.: Modeling and prediction of the effective thermal conductivity of random open-cell porous foams. Int. J. Heat Mass Transf. 51, 1325–1331 (2008)MATHCrossRefGoogle Scholar
  135. 135.
    Wang, M., Pan, N.: Predictions of effective physical properties of complex multiphase materials. Mater. Sci. Eng. R Rep. 63, 1–30 (2008)CrossRefGoogle Scholar
  136. 136.
    Jeong, N., Choi, D.H., Lin, C.-L., et al.: Estimation of thermal and mass diffusivity in a porous medium of complex structure using a lattice Boltzmann method. Int. J. Heat Mass Transf. 51, 3913–3923 (2008)MATHCrossRefGoogle Scholar
  137. 137.
    Xuan, Y., Zhao, K., Li, Q., et al.: Investigation on mass diffusion process in porous media based on lattice Boltzmann method. Heat Mass Transf. 46, 1039–1051 (2010)CrossRefGoogle Scholar
  138. 138.
    Chai, Z., Huang, C., Shi, B., et al.: A comparative study on the lattice Boltzmann models for predicting effective diffusivity of porous media. Int. J. Heat Mass Transf. 98, 687–696 (2016)CrossRefGoogle Scholar
  139. 139.
    van der Hoef, M., van Sint Annaland, M., Deen, N., et al.: Numerical simulation of dense gas-solid fluidized beds: a multiscale modeling strategy. Annu. Rev. Fluid Mech. 40, 47–70 (2008)MathSciNetMATHCrossRefGoogle Scholar
  140. 140.
    Tenneti, S., Subramaniam, S.: Particle-resolved direct numerical simulation for gas-solid flow model development. Annu. Rev. Fluid Mech. 46, 199–230 (2014)MathSciNetMATHCrossRefGoogle Scholar
  141. 141.
    Qi, D., Luo, L.: Transitions in rotations of a nonspherical particle in a three-dimensional moderate Reynolds number Couette flow. Phys. Fluids 14, 4440–4443 (2002)MATHCrossRefGoogle Scholar
  142. 142.
    Qi, D., Luo, L.-S.: Rotational and orientational behaviour of three-dimensional spheroidal particles in Couette flows. J. Fluid Mech. 477, 201–213 (2003)MATHCrossRefGoogle Scholar
  143. 143.
    Huang, H., Yang, X., Krafczyk, M., et al.: Rotation of spheroidal particles in Couette flows. J. Fluid Mech. 692, 369–394 (2012)MathSciNetMATHCrossRefGoogle Scholar
  144. 144.
    Huang, H., Yang, X., Lu, X.-Y.: Sedimentation of an ellipsoidal particle in narrow tubes. Phys. Fluids 26, 053302 (2014)CrossRefGoogle Scholar
  145. 145.
    Yang, X., Huang, H., Lu, X., et al.: Sedimentation of an oblate ellipsoid in narrow tubes. Phys. Rev. E 92, 063009 (2015)CrossRefGoogle Scholar
  146. 146.
    Yang, X., Huang, H., Lu, X.: The motion of a neutrally buoyant ellipsoid inside square tube flows. Adv. Appl. Math. Mech. 9, 233–249 (2017)MathSciNetCrossRefGoogle Scholar
  147. 147.
    Huang, H., Wu, Y., Lu, X.: Shear viscosity of dilute suspensions of ellipsoidal particles with a lattice Boltzmann method. Phys. Rev. E 86, 046305 (2012)CrossRefGoogle Scholar
  148. 148.
    Ladd, A.J.: Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. J. Fluid Mech. 271, 285–309 (1994)MathSciNetMATHCrossRefGoogle Scholar
  149. 149.
    Ladd, A.J.: Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results. J. Fluid Mech. 271, 311–339 (1994)MathSciNetMATHCrossRefGoogle Scholar
  150. 150.
    Lishchuk, S., Halliday, I., Care, C., et al.: Shear viscosity of bulk suspensions at low Reynolds number with the three-dimensional lattice Boltzmann method. Phys. Rev. E 74, 017701 (2006)CrossRefGoogle Scholar
  151. 151.
    Peng, C., Teng, Y., Hwang, B., et al.: Implementation issues and benchmarking of lattice Boltzmann method for moving rigid particle simulations in a viscous flow. Comput. Math. Appl. 72, 349–374 (2016)MathSciNetMATHCrossRefGoogle Scholar
  152. 152.
    Bouzidi, M., Firdaouss, M., Lallemand, P., et al.: Momentum transfer of a Boltzmann-lattice fluid with boundaries. Phys. Fluids 13, 3452–3459 (2001)MATHCrossRefGoogle Scholar
  153. 153.
    Lallemand, P., Luo, L.-S.: Lattice Boltzmann method for moving boundaries. J. Comput. Phys. 184, 406–421 (2003)MathSciNetMATHCrossRefGoogle Scholar
  154. 154.
    Mei, R., Luo, L.-S., Shyy, W., et al.: An accurate curved boundary treatment in the lattice Boltzmann method. J. Comput. Phys. 155, 307–330 (1999)MATHCrossRefGoogle Scholar
  155. 155.
    Mei, R., Shyy, W., Yu, D., et al.: Lattice Boltzmann method for 3-D flows with curved boundary. J. Comput. Phys. 161, 680–699 (2000)MATHCrossRefGoogle Scholar
  156. 156.
    Chun, B., Ladd, A.: Interpolated boundary condition for lattice Boltzmann simulations of flows in narrow gaps. Phys. Rev. E 75, 066705 (2007)MathSciNetCrossRefGoogle Scholar
  157. 157.
    Tao, S., Guo, Z., Wang, L.-P., et al.: Numerical study on the sedimentation of single and multiple slippery particles in a Newtonian fluid. Powder Technol. 315, 126–138 (2017)CrossRefGoogle Scholar
  158. 158.
    Wen, B., Zhang, C., Fang, H., et al.: Hydrodynamic force evaluation by momentum exchange method in lattice Boltzmann simulations. Entropy 17, 8240–8266 (2015)CrossRefGoogle Scholar
  159. 159.
    Mei, R., Yu, D., Shyy, W., et al.: Force evaluation in the lattice Boltzmann method involving curved geometry. Phys. Rev. E 65, 041203 (2002)CrossRefGoogle Scholar
  160. 160.
    Clausen, J.R., Aidun, C.K.: Galilean invariance in the lattice-Boltzmann method and its effect on the calculation of rheological properties in suspensions. Int. J. Multiph. Flow 35, 307–311 (2009)CrossRefGoogle Scholar
  161. 161.
    Chen, Y., Cai, Q., Xia, Z., et al.: Momentum-exchange method in lattice Boltzmann simulations of particle-fluid interactions. Phys. Rev. E 88, 013303 (2013)CrossRefGoogle Scholar
  162. 162.
    Wen, B., Zhang, C., Tu, Y., et al.: Galilean invariant fluid-solid interfacial dynamics in lattice Boltzmann simulations. J. Comput. Phys. 266, 161–170 (2014)MathSciNetMATHCrossRefGoogle Scholar
  163. 163.
    Xu, A., Zhao, T., Shi, L., et al.: Three-dimensional lattice Boltzmann simulation of suspensions containing both micro- and nanoparticles. Int. J. Heat Fluid Flow 62, 560–567 (2016)CrossRefGoogle Scholar
  164. 164.
    Peng, C., Geneva, N., Guo, Z., et al.: Issues associated with Galilean invariance on a moving solid boundary in the lattice Boltzmann method. Phys. Rev. E 95, 013301 (2017)Google Scholar
  165. 165.
    Feng, Z.-G., Michaelides, E.E.: The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems. J. Comput. Phys. 195, 602–628 (2004)MATHCrossRefGoogle Scholar
  166. 166.
    Ladd, A., Verberg, R.: Lattice-Boltzmann simulations of particle-fluid suspensions. J. Stat. Phys. 104, 1191–1251 (2001)MathSciNetMATHCrossRefGoogle Scholar
  167. 167.
    Xia, Z., Connington, K.W., Rapaka, S., et al.: Flow patterns in the sedimentation of an elliptical particle. J. Fluid Mech. 625, 249–272 (2009)MATHCrossRefGoogle Scholar
  168. 168.
    Tao, S., Hu, J., Guo, Z., et al.: An investigation on momentum exchange methods and refilling algorithms for lattice Boltzmann simulation of particulate flows. Comput. Fluids 133, 1–14 (2016)Google Scholar
  169. 169.
    Hu, J., Tao, S., Guo, Z., et al.: An efficient unified iterative scheme for moving boundaries in lattice Boltzmann method. Comput. Fluids 144, 34–43 (2017)MathSciNetCrossRefGoogle Scholar
  170. 170.
    Wang, L.-P., Peng, C., Guo, Z., et al.: Lattice Boltzmann simulation of particle-laden turbulent channel flow. Comput. Fluids 124, 226–236 (2016)MathSciNetCrossRefGoogle Scholar
  171. 171.
    Niu, X.-D., Munekata, T., Hyodo, S.-A., et al.: An investigation of water-gas transport processes in the gas-diffusion-layer of a PEM fuel cell by a multiphase multiple-relaxation-time lattice Boltzmann model. J. Power Sources 172, 542–552 (2007)CrossRefGoogle Scholar
  172. 172.
    Sinha, P.K., Mukherjee, P.P., Wang, C.-Y., et al.: Impact of GDL structure and wettability on water management in polymer electrolyte fuel cells. J. Mater. Chem. 17, 3089–3103 (2007)Google Scholar
  173. 173.
    Hao, L., Cheng, P.: Lattice Boltzmann simulations of water transport in gas diffusion layer of a polymer electrolyte membrane fuel cell. J. Power Sources 195, 3870–3881 (2010)CrossRefGoogle Scholar
  174. 174.
    Hao, L., Cheng, P.: Pore-scale simulations on relative permeabilities of porous media by lattice Boltzmann method. Int. J. Heat Mass Transf. 53, 1908–1913 (2010)MATHCrossRefGoogle Scholar
  175. 175.
    Chen, L., Luan, H.-B., He, Y.-L., et al.: Pore-scale flow and mass transport in gas diffusion layer of proton exchange membrane fuel cell with interdigitated flow fields. Int. J. Therm. Sci. 51, 132–144 (2012)CrossRefGoogle Scholar
  176. 176.
    Hao, L., Cheng, P.: Lattice Boltzmann simulations of liquid droplet dynamic behavior on a hydrophobic surface of a gas flow channel. J. Power Sources 190, 435–446 (2009)CrossRefGoogle Scholar
  177. 177.
    Hirt, C., Nichols, B.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201–225 (1981)MATHCrossRefGoogle Scholar
  178. 178.
    Sethian, J., Smereka, P.: Level set methods for fluid interfaces. Annu. Rev. Fluid Mech. 35, 341–372 (2003)MathSciNetMATHCrossRefGoogle Scholar
  179. 179.
    Badalassi, V., Ceniceros, H., Banerjee, S., et al.: Computation of multiphase systems with phase field models. J. Comput. Phys. 190, 371–397 (2003)MathSciNetMATHCrossRefGoogle Scholar
  180. 180.
    Qiu, G., Joshi, A.S., Dennison, C., et al.: 3-D pore-scale resolved model for coupled species/charge/fluid transport in a vanadium redox flow battery. Electrochim. Acta 64, 46–64 (2012)CrossRefGoogle Scholar
  181. 181.
    Qiu, G., Dennison, C., Knehr, K., et al.: Pore-scale analysis of effects of electrode morphology and electrolyte flow conditions on performance of vanadium redox flow batteries. J. Power Sources 219, 223–234 (2012)CrossRefGoogle Scholar
  182. 182.
    Chen, R., Zhao, T., Yang, W., et al.: Two-dimensional two-phase thermal model for passive direct methanol fuel cells. J. Power Sources 175, 276–287 (2008)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.HKUST Energy Institute, Department of Mechanical and Aerospace EngineeringThe Hong Kong University of Science and TechnologyHong KongChina

Personalised recommendations