Tough and tunable adhesion of hydrogels: experiments and models
- 993 Downloads
- 8 Citations
Abstract
As polymer networks infiltrated with water, hydrogels are major constituents of animal and plant bodies and have diverse engineering applications. While natural hydrogels can robustly adhere to other biological materials, such as bonding of tendons and cartilage on bones and adhesive plaques of mussels, it is challenging to achieve such tough adhesions between synthetic hydrogels and engineering materials. Recent experiments show that chemically anchoring long-chain polymer networks of tough synthetic hydrogels on solid surfaces create adhesions tougher than their natural counterparts, but the underlying mechanism has not been well understood. It is also challenging to tune systematically the adhesion of hydrogels on solids. Here, we provide a quantitative understanding of the mechanism for tough adhesions of hydrogels on solid materials via a combination of experiments, theory, and numerical simulations. Using a coupled cohesive-zone and Mullins-effect model validated by experiments, we reveal the interplays of intrinsic work of adhesion, interfacial strength, and energy dissipation in bulk hydrogels in order to achieve tough adhesions. We further show that hydrogel adhesion can be systematically tuned by tailoring the hydrogel geometry and silanization time of solid substrates, corresponding to the control of energy dissipation zone and intrinsic work of adhesion, respectively. The current work further provides a theoretical foundation for rational design of future biocompatible and underwater adhesives.
Keywords
Adhesion Hydrogels Soft materials Mullins effectNotes
Acknowledgements
This work is supported by the Office Naval Research (Grant N00014-14-1-0528), Draper Laboratory, MIT Institute for Soldier Nanotechnologies and the National Science Foundation (Grant CMMI-1253495). Hyunwoo Yuk acknowledges the financial support from Samsung Scholarship. Xuanhe Zhao acknowledges the supports from the National Institutes Health (Grant UH3TR000505). The authors are also grateful for the support from MIT research computing resources and the Extreme Science and Engineering Discovery Environment (XSEDE) (Grant TG-MSS160007).
Supplementary material
References
- 1.Bobyn, J., Wilson, G., MacGregor, D., et al.: Effect of pore size on the peel strength of attachment of fibrous tissue to poroussurfaced implants. J. Biomed. Mater. Res. 16, 571–584 (1982)CrossRefGoogle Scholar
- 2.Moretti, M., Wendt, D., Schaefer, D., et al.: Structural characterization and reliable biomechanical assessment of integrative cartilage repair. J. Biomech. 38, 1846–1854 (2005)CrossRefGoogle Scholar
- 3.Waite, J.H.: Nature’s underwater adhesive specialist. Int. J. Adhes. Adhes. 7, 9–14 (1987)CrossRefGoogle Scholar
- 4.Desmond, K.W., Zacchia, N.A., Waite, J.H., et al.: Dynamics of mussel plaque detachment. Soft Matter 11, 6832–6839 (2015)CrossRefGoogle Scholar
- 5.Qin, Z., Buehler, M.J.: Impact tolerance in mussel thread networks by heterogeneous material distribution. Nat. Commun. 4, 2187 (2013)Google Scholar
- 6.Peppas, N.A., Hilt, J.Z., Khademhosseini, A., et al.: Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv. Mater. 18, 1345 (2006)CrossRefGoogle Scholar
- 7.Lee, K.Y., Mooney, D.J.: Hydrogels for tissue engineering. Chem. Rev. 101, 1869–1880 (2001)CrossRefGoogle Scholar
- 8.Keplinger, C., Sun, J.-Y., Foo, C.C., et al.: Stretchable, transparent, ionic conductors. Science 341, 984–987 (2013)CrossRefGoogle Scholar
- 9.Lin, S., Yuk, H., Zhang, T., et al.: Stretchable hydrogel electronics and devices. Adv. Mater. 28, 4497–4505 (2016)CrossRefGoogle Scholar
- 10.Dong, L., Agarwal, A.K., Beebe, D.J., et al.: Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature 442, 551–554 (2006)CrossRefGoogle Scholar
- 11.Beebe, D.J., Moore, J.S., Bauer, J.M., et al.: Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404, 588–590 (2000)CrossRefGoogle Scholar
- 12.Yu, C., Duan, Z., Yuan, P., et al.: Electronically programmable, reversible shape change in twoand threedimensional hydrogel structures. Adv. Mater. 25, 1541–1546 (2013)CrossRefGoogle Scholar
- 13.Sudre, G., Olanier, L., Tran, Y., et al.: Reversible adhesion between a hydrogel and a polymer brush. Soft Matter 8, 8184–8193 (2012)CrossRefGoogle Scholar
- 14.Peak, C.W., Wilker, J.J., Schmidt, G.: A review on tough and sticky hydrogels. Colloid Polym. Sci. 291, 2031–2047 (2013)CrossRefGoogle Scholar
- 15.Wu, C.J., Wilker, J.J., Schmidt, G.: Robust and adhesive hydrogels from crosslinked poly (ethylene glycol) and silicate for biomedical use. Macromol. Biosci. 13, 59–66 (2013)CrossRefGoogle Scholar
- 16.Rose, S., Prevoteau, A., Elzière, P., et al.: Nanoparticle solutions as adhesives for gels and biological tissues. Nature 505, 382–385 (2014)CrossRefGoogle Scholar
- 17.Waite, J.H., Tanzer, M.L.: Polyphenolic substance of Mytilus edulis: novel adhesive containing L-dopa and hydroxyproline. Science 212, 1038–1040 (1981)CrossRefGoogle Scholar
- 18.Lee, H., Scherer, N.F., Messersmith, P.B.: Single-molecule mechanics of mussel adhesion. Proc. Natl. Acad. Sci. USA 103, 12999–13003 (2006)CrossRefGoogle Scholar
- 19.Qin, Z., Buehler, M.J.: Molecular mechanics of mussel adhesion proteins. J. Mech. Phys. Solids 62, 19–30 (2014)CrossRefGoogle Scholar
- 20.Lin, Q., Gourdon, D., Sun, C., et al.: Adhesion mechanisms of the mussel foot proteins mfp-1 and mfp-3. Proc. Natl. Acad. Sci. USA 104, 3782–3786 (2007)CrossRefGoogle Scholar
- 21.Brubaker, C.E., Messersmith, P.B.: Enzymatically degradable mussel-inspired adhesive hydrogel. Biomacromolecules 12, 4326–4334 (2011)CrossRefGoogle Scholar
- 22.Guvendiren, M., Messersmith, P.B., Shull, K.R.: Self-assembly and adhesion of DOPA-modified methacrylic triblock hydrogels. Biomacromolecules 9, 122–128 (2007)CrossRefGoogle Scholar
- 23.Lee, B.P., Dalsin, J.L., Messersmith, P.B.: Synthesis and gelation of DOPA-modified poly (ethylene glycol) hydrogels. Biomacromolecules 3, 1038–1047 (2002)CrossRefGoogle Scholar
- 24.Kim, B.J., Oh, D.X., Kim, S., et al.: Mussel-mimetic protein-based adhesive hydrogel. Biomacromolecules 15, 1579–1585 (2014)CrossRefGoogle Scholar
- 25.Kurokawa, T., Furukawa, H., Wang, W., et al.: Formation of a strong hydrogel-porous solid interface via the double-network principle. Acta Biomater. 6, 1353–1359 (2010)CrossRefGoogle Scholar
- 26.Yuk, H., Zhang, T., Parada, G.A., et al.: Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures. Nat. Commun. 7, 12028 (2016)Google Scholar
- 27.Yuk, H., Zhang, T., Lin, S., et al.: Tough bonding of hydrogels to diverse non-porous surfaces. Nat. Mater. 15, 190–196 (2016)CrossRefGoogle Scholar
- 28.Gent, A., Lai, S.M.: Interfacial bonding, energy dissipation, and adhesion. J. Polym. Sci. Part B 32, 1543–1555 (1994)CrossRefGoogle Scholar
- 29.Creton, C., Kramer, E.J., Brown, H.R., et al.: Adhesion and fracture of interfaces between immiscible polymers: from the molecular to the continuum scale. In: Molecular Simulation Fracture Gel Theory, Springer, 53–136 (2001)Google Scholar
- 30.Shull, K.R.: Contact mechanics and the adhesion of soft solids. Mater. Sci. Eng. R-Rep. 36, 1–45 (2002)CrossRefGoogle Scholar
- 31.Creton, C., Ciccotti, M.: Fracture and adhesion of soft materials: a review. Rep. Prog. Phys. 79, 046601 (2016)CrossRefGoogle Scholar
- 32.Ahagon, A., Gent, A.: Effect of interfacial bonding on the strength of adhesion. J. Polym. Sci. Polym. Phys. Ed. 13, 1285–1300 (1975)CrossRefGoogle Scholar
- 33.Gent, A.: Adhesion and strength of viscoelastic solids. Is there a relationship between adhesion and bulk properties? Langmuir 12, 4492–4496 (1996)CrossRefGoogle Scholar
- 34.Derail, C., Allal, A., Marin, G., et al.: Relationship between viscoelastic and peeling properties of model adhesives. Part 1. Cohesive fracture. J. Adhes. 61, 123–157 (1997)CrossRefGoogle Scholar
- 35.Derail, C., Allal, A., Marin, G., et al.: Relationship between viscoelastic and peeling properties of model adhesives. Part 2. The interfacial fracture domains. J. Adhes. 68, 203–228 (1998)CrossRefGoogle Scholar
- 36.Xu, D.B., Hui, C.Y., Kramer, E.J.: Interface fracture and viscoelastic deformation in finite size specimens. J. Appl. Phys. 72, 3305–3316 (1992)CrossRefGoogle Scholar
- 37.Creton, C.: Pressure-sensitive adhesives: an introductory course. MRS Bull. 28, 434–439 (2003)CrossRefGoogle Scholar
- 38.Villey, R., Creton, C., Cortet, P.-P., et al.: Rate-dependent elastic hysteresis during the peeling of pressure sensitive adhesives. Soft Matter 11, 3480–3491 (2015)CrossRefGoogle Scholar
- 39.Kim, K.S., Aravas, N.: Elastoplastic analysis of the peel test. Int. J. Solids. Struct. 24, 417–435 (1988)CrossRefGoogle Scholar
- 40.Kim, K.-S., Kim, J.: Elasto-plastic analysis of the peel test for thin film adhesion. J. Eng. Mater. Technol. 110, 266–273 (1988)CrossRefGoogle Scholar
- 41.Wei, Y., Hutchinson, J.W.: Interface strength, work of adhesion and plasticity in the peel test. Int. J. Fract. 93, 315–333 (1998)CrossRefGoogle Scholar
- 42.Persson, B., Albohr, O., Tartaglino, U., et al.: On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J. Phys. Condens. Matter. 17, R1 (2005)CrossRefGoogle Scholar
- 43.Hoefnagels, J., Neggers, J., Timmermans, P., et al.: Copper-rubber interface delamination in stretchable electronics. Scr. Mater. 63, 875–878 (2010)CrossRefGoogle Scholar
- 44.Vossen, B.G., Schreurs, P.J., van der Sluis, O., et al.: Multi-scale modeling of delamination through fibrillation. J. Mech. Phys. Solids 66, 117–132 (2014)CrossRefGoogle Scholar
- 45.Neggers, J., Hoefnagels, J., van der Sluis, O., et al.: Multi-scale experimental analysis of rate dependent metal-elastomer interface mechanics. J. Mech. Phys. Solids 80, 26–36 (2015)CrossRefGoogle Scholar
- 46.Vossen, B., van der Sluis, O., Schreurs, P., et al.: High toughness fibrillating metal-elastomer interfaces: on the role of discrete fibrils within the fracture process zone. Eng. Fract. Mech. 2164, 93–105 (2016)Google Scholar
- 47.Gong, J.P., Katsuyama, Y., Kurokawa, T., et al.: Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 15, 1155–1158 (2003)CrossRefGoogle Scholar
- 48.Sun, J.-Y., Zhao, X., Illeperuma, W.R., et al.: Highly stretchable and tough hydrogels. Nature 489, 133–136 (2012)CrossRefGoogle Scholar
- 49.Zhang, T., Lin, S., Yuk, H., et al.: Predicting fracture energies and crack-tip fields of soft tough materials. Extreme Mech. Lett. 4, 1–8 (2015)CrossRefGoogle Scholar
- 50.Maugis, D., Barquins, M.: Fracture mechanics and the adherence of viscoelastic bodies. J. Phys. D Appl. Phys. 11, 1989–2023 (1978)CrossRefGoogle Scholar
- 51.Rahul-Kumar, P., Jagota, A., Bennison, S., et al.: Polymer interfacial fracture simulations using cohesive elements. Acta Mater. 47, 4161–4169 (1999)CrossRefGoogle Scholar
- 52.Mohammed, I., Liechti, K.M.: Cohesive zone modeling of crack nucleation at bimaterial corners. J. Mech. Phys. Solids 48, 735–764 (2000)CrossRefzbMATHGoogle Scholar
- 53.Rahulkumar, P., Jagota, A., Bennison, S., et al.: Cohesive element modeling of viscoelastic fracture: application to peel testing of polymers. Int. J. Solids Struct. 37, 1873–1897 (2000)CrossRefzbMATHGoogle Scholar
- 54.Allen, D.H., Searcy, C.R.: A micromechanical model for a viscoelastic cohesive zone. Int. J. Fract. 107, 159–176 (2001)CrossRefGoogle Scholar
- 55.Yang, Q., Thouless, M., Ward, S.: Numerical simulations of adhesively-bonded beams failing with extensive plastic deformation. J. Mech. Phys. Solids 47, 1337–1353 (1999)CrossRefzbMATHGoogle Scholar
- 56.Su, C., Wei, Y., Anand, L.: An elastic–plastic interface constitutive model: application to adhesive joints. Int. J. Plast. 20, 2063–2081 (2004)CrossRefzbMATHGoogle Scholar
- 57.Ogden, R., Roxburgh, D.: A pseudo-elastic model for the Mullins effect in filled rubber. Proc. R. Soc. A. 455, 2861–2877 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
- 58.Systèmes, D.: Abaqus Analysis User’s Manual. Simulia Corp., Providence (2007)Google Scholar
- 59.Kendall, K.: Thin-film peeling-the elastic term. J. Phys. D Appl. Phys. 8, 1449 (1975)CrossRefGoogle Scholar
- 60.Kanan, S.M., Tze, W.T., Tripp, C.P.: Method to double the surface concentration and control the orientation of adsorbed (3-aminopropyl) dimethylethoxysilane on silica powders and glass slides. Langmuir 18, 6623–6627 (2002)Google Scholar
- 61.Moon, J.H., Shin, J.W., Kim, S.Y., et al.: Formation of uniform aminosilane thin layers: an imine formation to measure relative surface density of the amine group. Langmuir 12, 4621–4624 (1996)Google Scholar
- 62.Sun, T.L., Kurokawa, T., Kuroda, S., et al.: Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat. Mater. 12, 932–937 (2013)CrossRefGoogle Scholar
- 63.Ducrot, E., Chen, Y., Bulters, M., et al.: Toughening elastomers with sacrificial bonds and watching them break. Science 344, 186–189 (2014)CrossRefGoogle Scholar
- 64.Autumn, K., Liang, Y.A., Hsieh, S.T., et al.: Adhesive force of a single gecko foot-hair. Nature 405, 681–685 (2000)CrossRefGoogle Scholar
- 65.Yao, H., Gao, H.: Mechanics of robust and releasable adhesion in biology: bottom-up designed hierarchical structures of gecko. J. Mech. Phys. Solids 54, 1120–1146 (2006)CrossRefzbMATHGoogle Scholar
- 66.Yuk, H., Lin, S., Ma, C., et al.: Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water. Nature Communications 8, 14230 (2017)Google Scholar
- 67.Liu, X., Tang, T., Tham, E., et al.: Stretchable living materials and devices with hydrogel-elastomer hybrids hosting programmed cells. Proc. Natl. Acad. Sci. 114, 2200–2205 (2017)Google Scholar