Acta Mechanica Sinica

, Volume 33, Issue 3, pp 543–554 | Cite as

Tough and tunable adhesion of hydrogels: experiments and models

  • Teng Zhang
  • Hyunwoo Yuk
  • Shaoting Lin
  • German A. Parada
  • Xuanhe ZhaoEmail author
Research Paper


As polymer networks infiltrated with water, hydrogels are major constituents of animal and plant bodies and have diverse engineering applications. While natural hydrogels can robustly adhere to other biological materials, such as bonding of tendons and cartilage on bones and adhesive plaques of mussels, it is challenging to achieve such tough adhesions between synthetic hydrogels and engineering materials. Recent experiments show that chemically anchoring long-chain polymer networks of tough synthetic hydrogels on solid surfaces create adhesions tougher than their natural counterparts, but the underlying mechanism has not been well understood. It is also challenging to tune systematically the adhesion of hydrogels on solids. Here, we provide a quantitative understanding of the mechanism for tough adhesions of hydrogels on solid materials via a combination of experiments, theory, and numerical simulations. Using a coupled cohesive-zone and Mullins-effect model validated by experiments, we reveal the interplays of intrinsic work of adhesion, interfacial strength, and energy dissipation in bulk hydrogels in order to achieve tough adhesions. We further show that hydrogel adhesion can be systematically tuned by tailoring the hydrogel geometry and silanization time of solid substrates, corresponding to the control of energy dissipation zone and intrinsic work of adhesion, respectively. The current work further provides a theoretical foundation for rational design of future biocompatible and underwater adhesives.


Adhesion Hydrogels Soft materials Mullins effect 



This work is supported by the Office Naval Research (Grant N00014-14-1-0528), Draper Laboratory, MIT Institute for Soldier Nanotechnologies and the National Science Foundation (Grant CMMI-1253495). Hyunwoo Yuk acknowledges the financial support from Samsung Scholarship. Xuanhe Zhao acknowledges the supports from the National Institutes Health (Grant UH3TR000505). The authors are also grateful for the support from MIT research computing resources and the Extreme Science and Engineering Discovery Environment (XSEDE) (Grant TG-MSS160007).

Supplementary material

10409_2017_661_MOESM1_ESM.m4v (36.5 mb)
Supplementary material 1 (m4v 37391 KB)


  1. 1.
    Bobyn, J., Wilson, G., MacGregor, D., et al.: Effect of pore size on the peel strength of attachment of fibrous tissue to poroussurfaced implants. J. Biomed. Mater. Res. 16, 571–584 (1982)CrossRefGoogle Scholar
  2. 2.
    Moretti, M., Wendt, D., Schaefer, D., et al.: Structural characterization and reliable biomechanical assessment of integrative cartilage repair. J. Biomech. 38, 1846–1854 (2005)CrossRefGoogle Scholar
  3. 3.
    Waite, J.H.: Nature’s underwater adhesive specialist. Int. J. Adhes. Adhes. 7, 9–14 (1987)CrossRefGoogle Scholar
  4. 4.
    Desmond, K.W., Zacchia, N.A., Waite, J.H., et al.: Dynamics of mussel plaque detachment. Soft Matter 11, 6832–6839 (2015)CrossRefGoogle Scholar
  5. 5.
    Qin, Z., Buehler, M.J.: Impact tolerance in mussel thread networks by heterogeneous material distribution. Nat. Commun. 4, 2187 (2013)Google Scholar
  6. 6.
    Peppas, N.A., Hilt, J.Z., Khademhosseini, A., et al.: Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv. Mater. 18, 1345 (2006)CrossRefGoogle Scholar
  7. 7.
    Lee, K.Y., Mooney, D.J.: Hydrogels for tissue engineering. Chem. Rev. 101, 1869–1880 (2001)CrossRefGoogle Scholar
  8. 8.
    Keplinger, C., Sun, J.-Y., Foo, C.C., et al.: Stretchable, transparent, ionic conductors. Science 341, 984–987 (2013)CrossRefGoogle Scholar
  9. 9.
    Lin, S., Yuk, H., Zhang, T., et al.: Stretchable hydrogel electronics and devices. Adv. Mater. 28, 4497–4505 (2016)CrossRefGoogle Scholar
  10. 10.
    Dong, L., Agarwal, A.K., Beebe, D.J., et al.: Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature 442, 551–554 (2006)CrossRefGoogle Scholar
  11. 11.
    Beebe, D.J., Moore, J.S., Bauer, J.M., et al.: Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404, 588–590 (2000)CrossRefGoogle Scholar
  12. 12.
    Yu, C., Duan, Z., Yuan, P., et al.: Electronically programmable, reversible shape change in twoand threedimensional hydrogel structures. Adv. Mater. 25, 1541–1546 (2013)CrossRefGoogle Scholar
  13. 13.
    Sudre, G., Olanier, L., Tran, Y., et al.: Reversible adhesion between a hydrogel and a polymer brush. Soft Matter 8, 8184–8193 (2012)CrossRefGoogle Scholar
  14. 14.
    Peak, C.W., Wilker, J.J., Schmidt, G.: A review on tough and sticky hydrogels. Colloid Polym. Sci. 291, 2031–2047 (2013)CrossRefGoogle Scholar
  15. 15.
    Wu, C.J., Wilker, J.J., Schmidt, G.: Robust and adhesive hydrogels from crosslinked poly (ethylene glycol) and silicate for biomedical use. Macromol. Biosci. 13, 59–66 (2013)CrossRefGoogle Scholar
  16. 16.
    Rose, S., Prevoteau, A., Elzière, P., et al.: Nanoparticle solutions as adhesives for gels and biological tissues. Nature 505, 382–385 (2014)CrossRefGoogle Scholar
  17. 17.
    Waite, J.H., Tanzer, M.L.: Polyphenolic substance of Mytilus edulis: novel adhesive containing L-dopa and hydroxyproline. Science 212, 1038–1040 (1981)CrossRefGoogle Scholar
  18. 18.
    Lee, H., Scherer, N.F., Messersmith, P.B.: Single-molecule mechanics of mussel adhesion. Proc. Natl. Acad. Sci. USA 103, 12999–13003 (2006)CrossRefGoogle Scholar
  19. 19.
    Qin, Z., Buehler, M.J.: Molecular mechanics of mussel adhesion proteins. J. Mech. Phys. Solids 62, 19–30 (2014)CrossRefGoogle Scholar
  20. 20.
    Lin, Q., Gourdon, D., Sun, C., et al.: Adhesion mechanisms of the mussel foot proteins mfp-1 and mfp-3. Proc. Natl. Acad. Sci. USA 104, 3782–3786 (2007)CrossRefGoogle Scholar
  21. 21.
    Brubaker, C.E., Messersmith, P.B.: Enzymatically degradable mussel-inspired adhesive hydrogel. Biomacromolecules 12, 4326–4334 (2011)CrossRefGoogle Scholar
  22. 22.
    Guvendiren, M., Messersmith, P.B., Shull, K.R.: Self-assembly and adhesion of DOPA-modified methacrylic triblock hydrogels. Biomacromolecules 9, 122–128 (2007)CrossRefGoogle Scholar
  23. 23.
    Lee, B.P., Dalsin, J.L., Messersmith, P.B.: Synthesis and gelation of DOPA-modified poly (ethylene glycol) hydrogels. Biomacromolecules 3, 1038–1047 (2002)CrossRefGoogle Scholar
  24. 24.
    Kim, B.J., Oh, D.X., Kim, S., et al.: Mussel-mimetic protein-based adhesive hydrogel. Biomacromolecules 15, 1579–1585 (2014)CrossRefGoogle Scholar
  25. 25.
    Kurokawa, T., Furukawa, H., Wang, W., et al.: Formation of a strong hydrogel-porous solid interface via the double-network principle. Acta Biomater. 6, 1353–1359 (2010)CrossRefGoogle Scholar
  26. 26.
    Yuk, H., Zhang, T., Parada, G.A., et al.: Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures. Nat. Commun. 7, 12028 (2016)Google Scholar
  27. 27.
    Yuk, H., Zhang, T., Lin, S., et al.: Tough bonding of hydrogels to diverse non-porous surfaces. Nat. Mater. 15, 190–196 (2016)CrossRefGoogle Scholar
  28. 28.
    Gent, A., Lai, S.M.: Interfacial bonding, energy dissipation, and adhesion. J. Polym. Sci. Part B 32, 1543–1555 (1994)CrossRefGoogle Scholar
  29. 29.
    Creton, C., Kramer, E.J., Brown, H.R., et al.: Adhesion and fracture of interfaces between immiscible polymers: from the molecular to the continuum scale. In: Molecular Simulation Fracture Gel Theory, Springer, 53–136 (2001)Google Scholar
  30. 30.
    Shull, K.R.: Contact mechanics and the adhesion of soft solids. Mater. Sci. Eng. R-Rep. 36, 1–45 (2002)CrossRefGoogle Scholar
  31. 31.
    Creton, C., Ciccotti, M.: Fracture and adhesion of soft materials: a review. Rep. Prog. Phys. 79, 046601 (2016)CrossRefGoogle Scholar
  32. 32.
    Ahagon, A., Gent, A.: Effect of interfacial bonding on the strength of adhesion. J. Polym. Sci. Polym. Phys. Ed. 13, 1285–1300 (1975)CrossRefGoogle Scholar
  33. 33.
    Gent, A.: Adhesion and strength of viscoelastic solids. Is there a relationship between adhesion and bulk properties? Langmuir 12, 4492–4496 (1996)CrossRefGoogle Scholar
  34. 34.
    Derail, C., Allal, A., Marin, G., et al.: Relationship between viscoelastic and peeling properties of model adhesives. Part 1. Cohesive fracture. J. Adhes. 61, 123–157 (1997)CrossRefGoogle Scholar
  35. 35.
    Derail, C., Allal, A., Marin, G., et al.: Relationship between viscoelastic and peeling properties of model adhesives. Part 2. The interfacial fracture domains. J. Adhes. 68, 203–228 (1998)CrossRefGoogle Scholar
  36. 36.
    Xu, D.B., Hui, C.Y., Kramer, E.J.: Interface fracture and viscoelastic deformation in finite size specimens. J. Appl. Phys. 72, 3305–3316 (1992)CrossRefGoogle Scholar
  37. 37.
    Creton, C.: Pressure-sensitive adhesives: an introductory course. MRS Bull. 28, 434–439 (2003)CrossRefGoogle Scholar
  38. 38.
    Villey, R., Creton, C., Cortet, P.-P., et al.: Rate-dependent elastic hysteresis during the peeling of pressure sensitive adhesives. Soft Matter 11, 3480–3491 (2015)CrossRefGoogle Scholar
  39. 39.
    Kim, K.S., Aravas, N.: Elastoplastic analysis of the peel test. Int. J. Solids. Struct. 24, 417–435 (1988)CrossRefGoogle Scholar
  40. 40.
    Kim, K.-S., Kim, J.: Elasto-plastic analysis of the peel test for thin film adhesion. J. Eng. Mater. Technol. 110, 266–273 (1988)CrossRefGoogle Scholar
  41. 41.
    Wei, Y., Hutchinson, J.W.: Interface strength, work of adhesion and plasticity in the peel test. Int. J. Fract. 93, 315–333 (1998)CrossRefGoogle Scholar
  42. 42.
    Persson, B., Albohr, O., Tartaglino, U., et al.: On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J. Phys. Condens. Matter. 17, R1 (2005)CrossRefGoogle Scholar
  43. 43.
    Hoefnagels, J., Neggers, J., Timmermans, P., et al.: Copper-rubber interface delamination in stretchable electronics. Scr. Mater. 63, 875–878 (2010)CrossRefGoogle Scholar
  44. 44.
    Vossen, B.G., Schreurs, P.J., van der Sluis, O., et al.: Multi-scale modeling of delamination through fibrillation. J. Mech. Phys. Solids 66, 117–132 (2014)CrossRefGoogle Scholar
  45. 45.
    Neggers, J., Hoefnagels, J., van der Sluis, O., et al.: Multi-scale experimental analysis of rate dependent metal-elastomer interface mechanics. J. Mech. Phys. Solids 80, 26–36 (2015)CrossRefGoogle Scholar
  46. 46.
    Vossen, B., van der Sluis, O., Schreurs, P., et al.: High toughness fibrillating metal-elastomer interfaces: on the role of discrete fibrils within the fracture process zone. Eng. Fract. Mech. 2164, 93–105 (2016)Google Scholar
  47. 47.
    Gong, J.P., Katsuyama, Y., Kurokawa, T., et al.: Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 15, 1155–1158 (2003)CrossRefGoogle Scholar
  48. 48.
    Sun, J.-Y., Zhao, X., Illeperuma, W.R., et al.: Highly stretchable and tough hydrogels. Nature 489, 133–136 (2012)CrossRefGoogle Scholar
  49. 49.
    Zhang, T., Lin, S., Yuk, H., et al.: Predicting fracture energies and crack-tip fields of soft tough materials. Extreme Mech. Lett. 4, 1–8 (2015)CrossRefGoogle Scholar
  50. 50.
    Maugis, D., Barquins, M.: Fracture mechanics and the adherence of viscoelastic bodies. J. Phys. D Appl. Phys. 11, 1989–2023 (1978)CrossRefGoogle Scholar
  51. 51.
    Rahul-Kumar, P., Jagota, A., Bennison, S., et al.: Polymer interfacial fracture simulations using cohesive elements. Acta Mater. 47, 4161–4169 (1999)CrossRefGoogle Scholar
  52. 52.
    Mohammed, I., Liechti, K.M.: Cohesive zone modeling of crack nucleation at bimaterial corners. J. Mech. Phys. Solids 48, 735–764 (2000)CrossRefzbMATHGoogle Scholar
  53. 53.
    Rahulkumar, P., Jagota, A., Bennison, S., et al.: Cohesive element modeling of viscoelastic fracture: application to peel testing of polymers. Int. J. Solids Struct. 37, 1873–1897 (2000)CrossRefzbMATHGoogle Scholar
  54. 54.
    Allen, D.H., Searcy, C.R.: A micromechanical model for a viscoelastic cohesive zone. Int. J. Fract. 107, 159–176 (2001)CrossRefGoogle Scholar
  55. 55.
    Yang, Q., Thouless, M., Ward, S.: Numerical simulations of adhesively-bonded beams failing with extensive plastic deformation. J. Mech. Phys. Solids 47, 1337–1353 (1999)CrossRefzbMATHGoogle Scholar
  56. 56.
    Su, C., Wei, Y., Anand, L.: An elastic–plastic interface constitutive model: application to adhesive joints. Int. J. Plast. 20, 2063–2081 (2004)CrossRefzbMATHGoogle Scholar
  57. 57.
    Ogden, R., Roxburgh, D.: A pseudo-elastic model for the Mullins effect in filled rubber. Proc. R. Soc. A. 455, 2861–2877 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Systèmes, D.: Abaqus Analysis User’s Manual. Simulia Corp., Providence (2007)Google Scholar
  59. 59.
    Kendall, K.: Thin-film peeling-the elastic term. J. Phys. D Appl. Phys. 8, 1449 (1975)CrossRefGoogle Scholar
  60. 60.
    Kanan, S.M., Tze, W.T., Tripp, C.P.: Method to double the surface concentration and control the orientation of adsorbed (3-aminopropyl) dimethylethoxysilane on silica powders and glass slides. Langmuir 18, 6623–6627 (2002)Google Scholar
  61. 61.
    Moon, J.H., Shin, J.W., Kim, S.Y., et al.: Formation of uniform aminosilane thin layers: an imine formation to measure relative surface density of the amine group. Langmuir 12, 4621–4624 (1996)Google Scholar
  62. 62.
    Sun, T.L., Kurokawa, T., Kuroda, S., et al.: Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat. Mater. 12, 932–937 (2013)CrossRefGoogle Scholar
  63. 63.
    Ducrot, E., Chen, Y., Bulters, M., et al.: Toughening elastomers with sacrificial bonds and watching them break. Science 344, 186–189 (2014)CrossRefGoogle Scholar
  64. 64.
    Autumn, K., Liang, Y.A., Hsieh, S.T., et al.: Adhesive force of a single gecko foot-hair. Nature 405, 681–685 (2000)CrossRefGoogle Scholar
  65. 65.
    Yao, H., Gao, H.: Mechanics of robust and releasable adhesion in biology: bottom-up designed hierarchical structures of gecko. J. Mech. Phys. Solids 54, 1120–1146 (2006)CrossRefzbMATHGoogle Scholar
  66. 66.
    Yuk, H., Lin, S., Ma, C., et al.: Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water. Nature Communications 8, 14230 (2017)Google Scholar
  67. 67.
    Liu, X., Tang, T., Tham, E., et al.: Stretchable living materials and devices with hydrogel-elastomer hybrids hosting programmed cells. Proc. Natl. Acad. Sci. 114, 2200–2205 (2017)Google Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Teng Zhang
    • 1
    • 2
  • Hyunwoo Yuk
    • 2
  • Shaoting Lin
    • 2
  • German A. Parada
    • 2
  • Xuanhe Zhao
    • 2
    • 3
    Email author
  1. 1.Department of Mechanical and Aerospace EngineeringSyracuse UniversitySyracuseUSA
  2. 2.Soft Active Materials Laboratory, Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations