Acta Mechanica Sinica

, Volume 33, Issue 3, pp 575–584 | Cite as

Optomechanical soft metamaterials

  • Xiangjun Peng
  • Wei He
  • Yifan Liu
  • Fengxian Xin
  • Tian Jian Lu
Research Paper

Abstract

We present a new type of optomechanical soft metamaterials, which is different from conventional mechanical metamaterials, in that they are simple isotropic and homogenous materials without resorting to any complex nano/microstructures. This metamaterial is unique in the sense that its responses to uniaxial forcing can be tailored by programmed laser inputs to manifest different nonlinear constitutive behaviors, such as monotonic, S-shape, plateau, and non-monotonic snapping performance. To demonstrate the novel metamaterial, a thin sheet of soft material impinged by two counterpropagating lasers along its thickness direction and stretched by an in-plane tensile mechanical force is considered. A theoretical model is formulated to characterize the resulting optomechanical behavior of the thin sheet by combining the nonlinear elasticity theory of soft materials and the optical radiation stress theory. The optical radiation stresses predicted by the proposed model are validated by simulations based on the method of finite elements. Programmed optomechanical behaviors are subsequently explored using the validated model under different initial sheet thicknesses and different optical inputs, and the first- and second-order tangential stiffness of the metamaterial are used to plot the phase diagram of its nonlinear constitutive behaviors. The proposed optomechanical soft metamaterial shows great potential in biological medicine, microfluidic manipulation, and other fields.

Keywords

Optomechanics Soft metamaterial Optical radiation stress Programmable constitutive relation 

References

  1. 1.
    Lee, J.H., Singer, J.P., Thomas, E.L.: Micro-/nanostructured mechanical metamaterials. Adv. Mater. 24, 4782–4810 (2012)CrossRefGoogle Scholar
  2. 2.
    Smith, D.R., Padilla, W.J., Vier, D.C., et al.: Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000)CrossRefGoogle Scholar
  3. 3.
    Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000)CrossRefGoogle Scholar
  4. 4.
    Schurig, D., Mock, J.J., Justice, B.J., et al.: Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006)CrossRefGoogle Scholar
  5. 5.
    Nicolaou, Z.G., Motter, A.E.: Mechanical metamaterials with negative compressibility transitions. Nat. Mater. 11, 608–613 (2012)CrossRefGoogle Scholar
  6. 6.
    Lakes, R.S., Lee, T., Bersie, A., et al.: Extreme damping in composite materials with negative-stiffness inclusions. Nature 410, 565–567 (2001)CrossRefGoogle Scholar
  7. 7.
    Moore, B., Jaglinski, T., Stone, D.S., et al.: Negative incremental bulk modulus in foams. Philos. Mag. Lett. 86, 651–659 (2006)CrossRefGoogle Scholar
  8. 8.
    Janmey, P.A., Mccormick, M.E., Rammensee, S., et al.: Negative normal stress in semiflexible biopolymer gels. Nat. Mater. 6, 48–51 (2007)CrossRefGoogle Scholar
  9. 9.
    Lakes, R.: Foam structures with a negative Poisson’s ratio. Science 235, 1038–1040 (1987)CrossRefGoogle Scholar
  10. 10.
    Bertoldi, K., Reis, P., Willshaw, S., et al.: Novel negative Poisson’s ratio behavior induced by an elastic instability. Adv. Mater. 22, 361–366 (2010)CrossRefGoogle Scholar
  11. 11.
    Baughman, R.H., Shacklette, J.M., Zakhidov, A.A., et al.: Negative Poisson’s ratios as a common feature of cubic metals. Nature 392, 362–365 (1998)CrossRefGoogle Scholar
  12. 12.
    Carneiro, V.H., Puga, H., Meireles, J.: Analysis of the geometrical dependence of auxetic behavior in reentrant structures by finite elements. Acta Mech. Sin. 32, 1–6 (2016)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Li, J., Shim, J., Deng, J., et al.: Switching periodic membranes via pattern transformation and shape memory effect. Soft Matter 8, 10322–10328 (2012)CrossRefGoogle Scholar
  14. 14.
    Overvelde, J.T., Kloek, T., D’Haen, J.J., et al.: Amplifying the response of soft actuators by harnessing snap-through instabilities. Proc. Natl. Acad. Sci. U. S. A. 112, 10863–10868 (2015)CrossRefGoogle Scholar
  15. 15.
    Singamaneni, S., Bertoldi, K., Chang, S., et al.: Bifurcated Mechanical Behavior of Deformed Periodic Porous Solids. Adv. Funct. Mater. 19, 1426–1436 (2009)CrossRefGoogle Scholar
  16. 16.
    Shan, S., Kang, S.H., Raney, J.R., et al.: Multistable Architected Materials for Trapping Elastic Strain Energy. Adv. Mater. 27, 4296–4301 (2015)CrossRefGoogle Scholar
  17. 17.
    Xin, F.X., Lu, T.J.: Acoustomechanical constitutive theory for soft materials. Acta Mech. Sin. 32, 828–840 (2016)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Xin, F.X., Lu, T.J.: Tensional acoustomechanical soft metamaterials. Sci. Rep. 6, 27432 (2016)CrossRefGoogle Scholar
  19. 19.
    Ploschner, M., Mazilu, M., Krauss, T.F., et al.: Optical forces near a nanoantenna. J. Nanophotonics 4, 471–478 (2010)CrossRefGoogle Scholar
  20. 20.
    Maclure, M.: Radiation pressure and the linear momentum of the electromagnetic field. Opt. Express 12, 5375–5401 (2004)CrossRefGoogle Scholar
  21. 21.
    Cui, J., Björnmalm, M., Liang, K., et al.: Super-soft hydrogel particles with tunable elasticity in a microfluidic blood capillary model. Adv. Mater. 26, 7295–7299 (2014)CrossRefGoogle Scholar
  22. 22.
    Chakrabarti, A., Chaudhury, M.K.: Direct measurement of the surface tension of a soft elastic hydrogel: exploration of elastocapillary instability in adhesion. Langmuir 29, 6926–6935 (2013)CrossRefGoogle Scholar
  23. 23.
    Ashkin, A., Dziedzic, J.M., Bjorkholm, J.E., et al.: Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986)CrossRefGoogle Scholar
  24. 24.
    Chu, S.: Laser manipulation of atoms and particles. Science 253, 861–866 (1991)CrossRefGoogle Scholar
  25. 25.
    Dienerowitz, M., Mazilu, M., Dholakia, K.: Optical manipulation of nanoparticles: a review. J. Nanophotonics 2, 269–270 (2008)CrossRefGoogle Scholar
  26. 26.
    Jonás, A., Zemánek, P.: Light at work: the use of optical forces for particle manipulation, sorting, and analysis. Electrophoresis 29, 4813–4851 (2008)CrossRefGoogle Scholar
  27. 27.
    Dao, M., Lim, C.T., Suresh, S.: Mechanics of the human red blood cell deformed by optical tweezers. J. Mech. Phys. Solids 51, 2259–2280 (2003)CrossRefGoogle Scholar
  28. 28.
    Guck, J., Ananthakrishnan, R., Moon, T.J., et al.: Optical deformability of soft biological dielectrics. Phys. Rev. Lett. 84, 5451–5454 (2000)CrossRefGoogle Scholar
  29. 29.
    Casner, A., Delville, J.P.: Giant deformations of a liquid-liquid interface induced by the optical radiation pressure. Phys. Rev. Lett. 87, 603–604 (2001)CrossRefGoogle Scholar
  30. 30.
    Casner, A., Delville, J.P.: Laser-induced hydrodynamic instability of fluid interfaces. Phys. Rev. Lett. 90, 144503 (2003)CrossRefGoogle Scholar
  31. 31.
    Schroll, R.D., Wunenburger, R., Casner, A., et al.: Liquid transport due to light scattering. Phys. Rev. Lett. 98, 133601 (2006)CrossRefGoogle Scholar
  32. 32.
    Li, M., Pernice, W.H., Xiong, C., et al.: Harnessing optical forces in integrated photonic circuits. Nature 456, 480–484 (2008)CrossRefGoogle Scholar
  33. 33.
    Pernice, W.H.P., Li, M., Tang, H.X.: Theoretical investigation of the transverse optical force between a silicon nanowire waveguide and a substrate. Opt. Express 17, 1806–1816 (2009)CrossRefGoogle Scholar
  34. 34.
    Povinelli, M.L., Ibanescu, M., Johnson, S.G., et al.: Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide. Appl. Phys. Lett. 85, 1466–1468 (2004)CrossRefGoogle Scholar
  35. 35.
    Povinelli, M.L., Loncar, M., Ibanescu, M., et al.: Evanescent-wave bonding between optical waveguides. Opt. Lett. 30, 3042–3044 (2005)CrossRefGoogle Scholar
  36. 36.
    Ren, M., Huang, J., Cai, H., et al.: Nano-optomechanical actuator and pull-back instability. Acs Nano 7, 1676–1681 (2013)CrossRefGoogle Scholar
  37. 37.
    Thourhout, D.V., Roels, J.: Optomechanical device actuation through the optical gradient force. Nat. Photonics 4, 211–217 (2010)CrossRefGoogle Scholar
  38. 38.
    Juodkazis, S., Mukai, N., Wakaki, R., et al.: Reversible phase transitions in polymer gels induced by radiation forces. Nature 408, 178–181 (2000)Google Scholar
  39. 39.
    Gent, A.N.: A New Constitutive Relation for Rubber. Rubber Chem. Technol. 69, 59–61 (2012)CrossRefGoogle Scholar
  40. 40.
    Bai, R., Suo, Z.: Optomechanics of Soft Materials. J. Appl. Mech. 82, 071011 (2015)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Xiangjun Peng
    • 1
    • 2
  • Wei He
    • 1
    • 2
  • Yifan Liu
    • 1
    • 2
  • Fengxian Xin
    • 1
    • 2
  • Tian Jian Lu
    • 1
    • 2
  1. 1.State Key Laboratory for Strength and Vibration of Mechanical StructuresXi’an Jiaotong UniversityXi’anChina
  2. 2.MOE Key Laboratory for Multifunctional Materials and StructuresXi’an Jiaotong UniversityXi’anChina

Personalised recommendations