Acta Mechanica Sinica

, Volume 33, Issue 2, pp 250–259 | Cite as

A dynamic cellular vertex model of growing epithelial tissues

  • Shao-Zhen Lin
  • Bo Li
  • Xi-Qiao Feng
Research Paper


Intercellular interactions play a significant role in a wide range of biological functions and processes at both the cellular and tissue scales, for example, embryogenesis, organogenesis, and cancer invasion. In this paper, a dynamic cellular vertex model is presented to study the morphomechanics of a growing epithelial monolayer. The regulating role of stresses in soft tissue growth is revealed. It is found that the cells originating from the same parent cell in the monolayer can orchestrate into clustering patterns as the tissue grows. Collective cell migration exhibits a feature of spatial correlation across multiple cells. Dynamic intercellular interactions can engender a variety of distinct tissue behaviors in a social context. Uniform cell proliferation may render high and heterogeneous residual compressive stresses, while stress-regulated proliferation can effectively release the stresses, reducing the stress heterogeneity in the tissue. The results highlight the critical role of mechanical factors in the growth and morphogenesis of epithelial tissues and help understand the development and invasion of epithelial tumors.


Soft tissue Cellular vertex model Cell Morphogenesis 



Supports from the National Natural Science Foundation of China (Grants 11432008, 11542005, 11672161, and 11620101001), Tsinghua University (Grant 20151080441), and the Thousand Young Talents Program of China are acknowledged.


  1. 1.
    Guillot, C., Lecuit, T.: Mechanics of epithelial tissue homeostasis and morphogenesis. Science 340, 1185–1189 (2013)CrossRefGoogle Scholar
  2. 2.
    Bertet, C., Sulak, L., Lecuit, T.: Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation. Nature 429, 667–671 (2004)CrossRefGoogle Scholar
  3. 3.
    Lubarsky, B., Krasnow, M.A.: Tube morphogenesis: making and shaping biological tubes. Cell 112, 19–28 (2003)CrossRefGoogle Scholar
  4. 4.
    Balois, T., Ben Amar, M.: Morphology of melanocytic lesions in situ. Sci. Rep. 4, 3622 (2014)CrossRefGoogle Scholar
  5. 5.
    Kuipers, D., Mehonic, A., Kajita, M., et al.: Epithelial repair is a two-stage process driven first by dying cells and then by their neighbours. J. Cell Sci. 127, 1229–1241 (2014)CrossRefGoogle Scholar
  6. 6.
    Bi, D., Lopez, J., Schwarz, J., et al.: A density-independent rigidity transition in biological tissues. Nat. Phys. 11, 1074–1079 (2015)CrossRefGoogle Scholar
  7. 7.
    Park, J.A., Atia, L., Mitchel, J.A., et al.: Collective migration and cell jamming in asthma, cancer and development. J. Cell Sci. 129, 3375–3383 (2016)CrossRefGoogle Scholar
  8. 8.
    Doxzen, K., Vedula, S.R.K., Leong, M.C., et al.: Guidance of collective cell migration by substrate geometry. Integr. Biol. 5, 1026–1035 (2013)CrossRefGoogle Scholar
  9. 9.
    Vedula, S.R.K., Leong, M.C., Lai, T.L., et al.: Emerging modes of collective cell migration induced by geometrical constraints. Proc. Natl. Acad. Sci. USA 109, 12974–12979 (2012)CrossRefGoogle Scholar
  10. 10.
    Xu, G.K., Liu, Y., Li, B.: How do changes at the cell level affect the mechanical properties of epithelial monolayers? Soft Matter 11, 8782–8788 (2015)CrossRefGoogle Scholar
  11. 11.
    Cox, B.N., Snead, M.L.: Cells as strain-cued automata. J. Mech. Phys. Solids 87, 177–226 (2016)CrossRefGoogle Scholar
  12. 12.
    Ranft, J., Basan, M., Elgeti, J., et al.: Fluidization of tissues by cell division and apoptosis. Proc. Natl. Acad. Sci. USA 107, 20863–20868 (2010)CrossRefGoogle Scholar
  13. 13.
    Rossen, N.S., Tarp, J.M., Mathiesen, J., et al.: Long-range ordered vorticity patterns in living tissue induced by cell division. Nat. Commun. 5, 7 (2014)CrossRefGoogle Scholar
  14. 14.
    Doostmohammadi, A., Thampi, S.P., Saw, T.B., et al.: Celebrating Soft Matter’s 10th Anniversary: cell division: a source of active stress in cellular monolayers. Soft Matter 11, 7328–7336 (2015)CrossRefGoogle Scholar
  15. 15.
    Xue, S.L., Li, B., Feng, X.Q., et al.: Biochemomechanical poroelastic theory of avascular tumor growth. J. Mech. Phys. Solids 94, 409–432 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Stylianopoulos, T., Martin, J.D., Chauhan, V.P., et al.: Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors. Proc. Natl. Acad. Sci. USA 109, 15101–15108 (2012)CrossRefGoogle Scholar
  17. 17.
    Shraiman, B.I.: Mechanical feedback as a possible regulator of tissue growth. Proc. Natl. Acad. Sci. USA 102, 3318–3323 (2005)CrossRefGoogle Scholar
  18. 18.
    Szabó, A., Merks, R.M.: Cellular potts modeling of tumor growth, tumor invasion, and tumor evolution. Front. Oncol. 3, 87 (2013)CrossRefGoogle Scholar
  19. 19.
    Fletcher, A.G., Osterfield, M., Baker, R.E., et al.: Vertex models of epithelial morphogenesis. Biophys. J. 106, 2291–2304 (2014)CrossRefGoogle Scholar
  20. 20.
    Farhadifar, R., Röper, J.C., Algouy, B., et al.: The influence of cell mechanics, cell–cell interactions, and proliferation on epithelial packing. Curr. Biol. 17, 2095–2104 (2007)CrossRefGoogle Scholar
  21. 21.
    Merzouki, A., Malaspinas, O., Chopard, B.: The mechanical properties of a cell-based numerical model of epithelium. Soft Matter 12, 4745–4754 (2016)CrossRefGoogle Scholar
  22. 22.
    Vincent, J.P., Fletcher, A.G., Baena-Lopez, L.A.: Mechanisms and mechanics of cell competition in epithelia. Nat. Rev. Mol. Cell Biol. 14, 581–591 (2013)CrossRefGoogle Scholar
  23. 23.
    Loza, A.J., Koride, S., Schimizzi, G.V., et al.: Cell density and actomyosin contractility control the organization of migrating collectives within an epithelium. Mol. Biol. Cell 27, 3459–3470 (2016)CrossRefGoogle Scholar
  24. 24.
    Barton, D.L., Henkes, S., Weijer, C.J., et al.: Active vertex model for cell-resolution description of epithelial tissue mechanics. arXiv preprint, arXiv:1612.05960 (2016)
  25. 25.
    Lin, S.Z., Li, B., Xu, G.K., et al.: Collective dynamics of cancer cells confined in a confluent monolayer of normal cells. J. Biomech. 52, 140–147 (2017)CrossRefGoogle Scholar
  26. 26.
    Manning, M.L., Foty, R.A., Steinberg, M.S., et al.: Coaction of intercellular adhesion and cortical tension specifies tissue surface tension. Proc. Natl. Acad. Sci. USA 107, 12517–12522 (2010)CrossRefGoogle Scholar
  27. 27.
    Li, B., Sun, S.X.: Coherent motions in confluent cell monolayer sheets. Biophys. J. 107, 1532–1541 (2014)CrossRefGoogle Scholar
  28. 28.
    Forgacs, G., Foty, R.A., Shafrir, Y., et al.: Viscoelastic properties of living embryonic tissues: a quantitative study. Biophys. J. 74, 2227–2234 (1998)Google Scholar
  29. 29.
    Solon, J., Kaya-Copur, A., Colombelli, J., et al.: Pulsed forces timed by a ratchet-like mechanism drive directed tissue movement during dorsal closure. Cell 137, 1331–1342 (2009)CrossRefGoogle Scholar
  30. 30.
    Cadart, C., Zlotek-Zlotkiewicz, E., Le Berre, M., et al.: Exploring the function of cell shape and size during mitosis. Dev. Cell 29, 159–169 (2014)CrossRefGoogle Scholar
  31. 31.
    Anon, E., Serra-Picamal, X., Hersen, P., et al.: Cell crawling mediates collective cell migration to close undamaged epithelial gaps. Proc. Natl. Acad. Sci. USA 109, 10891–10896 (2012)CrossRefGoogle Scholar
  32. 32.
    Ishihara, S., Sugimura, K.: Bayesian inference of force dynamics during morphogenesis. J. Theor. Biol. 313, 201–211 (2012)CrossRefzbMATHGoogle Scholar
  33. 33.
    Gibson, W.T., Veldhuis, J.H., Rubinstein, B., et al.: Control of the mitotic cleavage plane by local epithelial topology. Cell 144, 427–438 (2011)CrossRefGoogle Scholar
  34. 34.
    Codling, E.A., Plank, M.J., Benhamou, S.: Random walk models in biology. J. R. Soc. Interface 5, 813–834 (2008)CrossRefGoogle Scholar
  35. 35.
    Angelini, T.E., Hannezo, E., Trepat, X., et al.: Cell migration driven by cooperative substrate deformation patterns. Phys. Rev. Lett. 104, 168104 (2010)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institute of Biomechanics and Medical Engineering, AML, Department of Engineering MechanicsTsinghua UniversityBeijingChina

Personalised recommendations