Acta Mechanica Sinica

, Volume 33, Issue 2, pp 267–273 | Cite as

Osteoporosis affects both post-yield microdamage accumulation and plasticity degradation in vertebra of ovariectomized rats

  • Siwei Li
  • Guodong Niu
  • Neil X. Dong
  • Xiaodu Wang
  • Zhongjun Liu
  • Chunli Song
  • Huijie Leng
Research Paper

Abstract

Estrogen withdrawal in postmenopausal women increases bone loss and bone fragility in the vertebra. Bone loss with osteoporosis not only reduces bone mineral density (BMD), but actually alters bone quality, which can be comprehensively represented by bone post-yield behaviors. This study aimed to provide some information as to how osteoporosis induced by estrogen depletion could influence the evolution of post-yield microdamage accumulation and plastic deformation in vertebral bodies. This study also tried to reveal the part of the mechanisms of how estrogen deficiency-induced osteoporosis would increase the bone fracture risk. A rat bilateral ovariectomy (OVX) model was used to induce osteoporosis. Progressive cyclic compression loading was developed for vertebra testing to elucidate the post-yield behaviors. BMD, bone volume fraction, stiffness degradation, and plastic deformation evolution were compared among rats raised for 5 weeks (ovx5w and sham5w groups) and 35 weeks (ovx35w and sham35w groups) after sham surgery and OVX. The results showed that a higher bone loss in vertebral bodies corresponded to lower stiffness and higher plastic deformation. Thus, osteoporosis could increase the vertebral fracture risk probably through microdamage accumulation and plastic deforming degradation.

Keywords

Osteoporosis Bone mineral density Vertebral body Post-yield Microdamage Plasticity 

Notes

Acknowledgements

This project was supported by the National Natural Science Foundation of China (Grants 11472017, 11002004).

References

  1. 1.
    Kanis, J.A., Melton, L.J.I.I.I., Christiansen, C., et al.: The diagnosis of osteoporosis. J. Bone Miner. Res. 9, 1137–1141 (1994)CrossRefGoogle Scholar
  2. 2.
    Yao, X., Wang, P., Dai, R., et al.: Microstructures and properties of cancellous bone of avascular necrosis of femoral heads. Acta Mech. Sin. 26, 13–19 (2010)CrossRefGoogle Scholar
  3. 3.
    Geusens, P., van Geel, T., van den Bergh, J.: Can hip fracture prediction in women be estimated beyond bone mineral density measurement alone? Ther. Adv. Musculoskelet. Dis. 2, 63–77 (2010)CrossRefGoogle Scholar
  4. 4.
    Hui, S.L., Slemenda, C.W., Johnston Jr., C.C.: Age and bone mass as predictors of fracture in a prospective study. J. Clin. Investig. 81, 1804–1809 (1988)CrossRefGoogle Scholar
  5. 5.
    Bouxsein, M.L.: Bone quality: where do we go from here? Osteoporos. Int. 14, S118–S127 (2003)CrossRefGoogle Scholar
  6. 6.
    Felsenberg, D., Boonen, S.: The bone quality framework: determinants of bone strength and their interrelationships, and implications for osteoporosis management. Clin. Ther. 27, 1–11 (2005)CrossRefGoogle Scholar
  7. 7.
    Gong, H., Fan, Y., Zhang, M., et al.: Age- and direction-related adaptations of lumbar vertebral trabecular bone with respect to apparent stiffness and tissue level stress distribution. Acta Mech. Sin. 25, 121–129 (2009)CrossRefMATHGoogle Scholar
  8. 8.
    Licata, A.A.: Bone density, bone quality, and FRAX: changing concepts in osteoporosis management. Am. J. Obstet. Gynecol. 208, 92–96 (2013)CrossRefGoogle Scholar
  9. 9.
    Schnitzler, C.M.: Bone quality: a determinant for certain risk factors for bone fragility. Calcif. Tissue Int. 53, S27–S31 (1993)CrossRefGoogle Scholar
  10. 10.
    Stokstad, E.: Bone quality fills holes in fracture risk. Science 308, 1580 (2005)CrossRefGoogle Scholar
  11. 11.
    Stepan, J.J., Burr, D.B., Pavo, I., et al.: Low bone mineral density is associated with bone microdamage accumulation in postmenopausal women with osteoporosis. Bone 41, 378–385 (2007)CrossRefGoogle Scholar
  12. 12.
    Leng, H., Dong, X.N., Wang, X.: Progressive post-yield behavior of human cortical bone in compression for middle-aged and elderly groups. J. Biomech. 42, 491–497 (2009)CrossRefGoogle Scholar
  13. 13.
    Wang, X., Puram, S.: The toughness of cortical bone and its relationship with age. Ann. Biomed. Eng. 32, 123–135 (2004)CrossRefGoogle Scholar
  14. 14.
    Wolfram, U., Schwiedrzik, J.: Post-yield and failure properties of cortical bone. Bonekey Rep. 5, 829 (2016)CrossRefGoogle Scholar
  15. 15.
    Dong, X.N., Luo, Q., Wang, X.: Progressive post-yield behavior of human cortical bone in shear. Bone 53, 1–5 (2013)CrossRefGoogle Scholar
  16. 16.
    Dong, X.N., Almer, J.D., Wang, X.: Post-yield nanomechanics of human cortical bone in compression using synchrotron X-ray scattering techniques. J. Biomech. 44, 676–682 (2011)CrossRefGoogle Scholar
  17. 17.
    Burr, D.B., Turner, C.H., Naick, P., et al.: Does microdamage accumulation affect the mechanical properties of bone? J. Biomech. 31, 337–345 (1998)CrossRefGoogle Scholar
  18. 18.
    Fazzalari, N.L., Forwood, M.R., Smith, K., et al.: Assessment of cancellous bone quality in severe osteoarthrosis: bone mineral density, mechanics, and microdamage. Bone 22, 381–388 (1998)CrossRefGoogle Scholar
  19. 19.
    Forwood, M.R., Parker, A.W.: Microdamage in response to repetitive torsional loading in the rat tibia. Calcif. Tissue Int. 45, 47–53 (1989)CrossRefGoogle Scholar
  20. 20.
    Norman, T.L., Yeni, Y.N., Brown, C.U., et al.: Influence of microdamge on fracture toughness of the human femur and tibia. Bone 23, 303–306 (1998)CrossRefGoogle Scholar
  21. 21.
    Reilly, G.C., Currey, J.D.: The development of microcracking and failure in bone depends on the loading mode to which it is adapted. J. Exp. Biol. 202, 543–552 (1999)Google Scholar
  22. 22.
    Timlin, J.A., Garden, A., Morris, M.D., et al.: Raman spectroscopic imaging markers for fatigue-related microdamage in bovine bone. Anal. Chem. 72, 2229–2236 (2000)CrossRefGoogle Scholar
  23. 23.
    Fondrk, M., Bahniuk, E., Davy, D.T., et al.: Some viscoplastic characteristics of bovine and human cortical bone. J. Biomech. 21, 623–630 (1988)CrossRefGoogle Scholar
  24. 24.
    Burstein, A.H., Reilly, D.T., Martens, M.: Aging of bone tissue: mechanical properties. J. Bone Joint Surg. Am. 58, 82–86 (1976)CrossRefGoogle Scholar
  25. 25.
    Currey, J.D.: Tensile yield in compact bone is determined by strain, post-yield behaviour by mineral content. J. Biomech. 37, 549–556 (2004)CrossRefGoogle Scholar
  26. 26.
    Les, C.M., Stover, S.M., Keyak, J.H., et al.: Stiff and strong compressive properties are associated with brittle post-yield behavior in equine compact bone material. J. Orthop. Res. 20, 607–614 (2002)CrossRefGoogle Scholar
  27. 27.
    Walsh, W.R., Guzelsu, N.: Compressive properties of cortical bone: mineral-organic interfacial bonding. Biomaterials 15, 137–145 (1994)CrossRefGoogle Scholar
  28. 28.
    Courtney, A.C., Hayes, W.C., Gibson, L.J.: Age-related differences in post-yield damage in human cortical bone. Experiment and model. J. Biomech. 29, 1463–1471 (1996)CrossRefGoogle Scholar
  29. 29.
    Jepsen, K.J., Davy, D.T.: Comparison of damage accumulation measures in human cortical bone. J. Biomech. 30, 891–894 (1997)CrossRefGoogle Scholar
  30. 30.
    Jepsen, K.J., Davy, D.T., Krzypow, D.J.: The role of the lamellar interface during torsional yielding of human cortical bone. J. Biomech. 32, 303–310 (1999)CrossRefGoogle Scholar
  31. 31.
    Joo, W., Jepsen, K.J., Davy, D.T.: The effect of recovery time and test conditions on viscoelastic measures of tensile damage in cortical bone. J. Biomech. 40, 2731–2737 (2007)CrossRefGoogle Scholar
  32. 32.
    Ikeda, S., Tsurukami, H., Ito, M., et al.: Effect of trabecular bone contour on ultimate strength of lumbar vertebra after bilateral ovariectomy in rats. Bone 28, 625–633 (2001)CrossRefGoogle Scholar
  33. 33.
    Leng, H., Wang, X., Ross, R.D., et al.: Micro-computed tomography of fatigue microdamage in cortical bone using a barium sulfate contrast agent. J. Mech. Behav. Biomed. Mater. 1, 68–75 (2008)CrossRefGoogle Scholar
  34. 34.
    Schaffler, M.B., Radin, E.L., Burr, D.B.: Mechanical and morphological effects of strain rate on fatigue of compact bone. Bone 10, 207–214 (1989)CrossRefGoogle Scholar
  35. 35.
    Burr, D.B., Martin, R.B., Schaffler, M.B., et al.: Bone remodeling in response to in vivo fatigue microdamage. J. Biomech. 18, 189–200 (1985)CrossRefGoogle Scholar
  36. 36.
    Martin, R.B.: Fatigue microdamage as an essential element of bone mechanics and biology. Calcif. Tissue Int. 73, 101–107 (2003)CrossRefGoogle Scholar
  37. 37.
    Mori, S., Burr, D.B.: Increased intracortical remodeling following fatigue damage. Bone 14, 103–109 (1993)CrossRefGoogle Scholar
  38. 38.
    Carter, D.R., Hayes, W.C.: Compact bone fatigue damage—I. Residual strength and stiffness. J. Biomech. 10, 325–337 (1977)CrossRefGoogle Scholar
  39. 39.
    Schaffler, M.B., Choi, K., Milgrom, C.: Aging and matrix microdamage accumulation in human compact bone. Bone 17, 521–525 (1995)CrossRefGoogle Scholar
  40. 40.
    Zioupos, P., Currey, J.D.: The extent of microcracking and the morphology of microcracks in damaged bone. J. Mater. Sci. 29, 978–986 (1994)CrossRefGoogle Scholar
  41. 41.
    Brennan, O., Kennedy, O.D., Lee, T.C., et al.: Effects of estrogen deficiency and bisphosphonate therapy on osteocyte viability and microdamage accumulation in an ovine model of osteoporosis. J. Orthop. Res. 29, 419–424 (2011)CrossRefGoogle Scholar
  42. 42.
    Leng, H., Reyes, M.J., Dong, X.N., et al.: Effect of age on mechanical properties of the collagen phase in different orientations of human cortical bone. Bone 55, 288–291 (2013)CrossRefGoogle Scholar
  43. 43.
    Brouwers, J.E., Ruchelsman, M., Rietbergen, B., et al.: Determination of rat vertebral bone compressive fatigue properties in untreated intact rats and zoledronic-acid-treated, ovariectomized rats. Osteoporos. Int. 20, 1377–1384 (2009)CrossRefGoogle Scholar
  44. 44.
    Shiraishi, A., Miyabe, S., Nakano, T., et al.: The combination therapy with alfacalcidol and risedronate improves the mechanical property in lumbar spine by affecting the material properties in an ovariectomized rat model of osteoporosis. BMC Musculoskelet. Disord. 10, 66 (2009)Google Scholar
  45. 45.
    Hansen, U., Zioupos, P., Simpson, R., et al.: The effect of strain rate on the mechanical properties of human cortical bone. J. Biomech. Eng. 130, 011011 (2008)CrossRefGoogle Scholar
  46. 46.
    Burr, D.B., Hooser, M.: Alterations to the en bloc basic fuchsin staining protocol for the demonstration of microdamage produced in vivo. Bone 17, 431–433 (1995)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Siwei Li
    • 1
    • 2
  • Guodong Niu
    • 1
    • 3
  • Neil X. Dong
    • 4
  • Xiaodu Wang
    • 5
  • Zhongjun Liu
    • 1
  • Chunli Song
    • 3
  • Huijie Leng
    • 1
  1. 1.Department of OrthopedicsPeking University Third HospitalBeijingChina
  2. 2.Department of OrthopedicsAnsteel Group HospitalAnshanChina
  3. 3.Beijing Key Lab of Spine DiseasesBeijingChina
  4. 4.Department of Health and KinesiologyUniversity of Texas at TylerTylerUSA
  5. 5.Department of Mechanical EngineeringUniversity of Texas at San AntonioSan AntonioUSA

Personalised recommendations