Motion visualization and estimation for flapping wing systems

Abstract

Studies of fluid-structure interactions associated with flexible structures such as flapping wings require the capture and quantification of large motions of bodies that may be opaque. As a case study, motion capture of a free flying Manduca sexta, also known as hawkmoth, is considered by using three synchronized high-speed cameras. A solid finite element (FE) representation is used as a reference body and successive snapshots in time of the displacement fields are reconstructed via an optimization procedure. One of the original aspects of this work is the formulation of an objective function and the use of shadow matching and strain-energy regularization. With this objective function, the authors penalize the projection differences between silhouettes of the captured images and the FE representation of the deformed body. The process and procedures undertaken to go from high-speed videography to motion estimation are discussed, and snapshots of representative results are presented. Finally, the captured free-flight motion is also characterized and quantified.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

References

  1. 1.

    Hedrick, T.L.: Software techniques for two- and three-dimensional kinematic measurements of biological and biomimetic systems. Bioinspir. Biomim. 3, 034001 (2008)

    Article  Google Scholar 

  2. 2.

    Ortega-Jimenez, V.M., Greeter, J.S., Mittal, R., et al.: Hawkmoth flight stability in turbulent vortex streets. J. Exp. Biol. 216, 4567–4579 (2013)

    Article  Google Scholar 

  3. 3.

    Dong, S.: BDF-like methods for nonlinear dynamic analysis. J. Comput. Phys. 229, 3019–3045 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Koehler, C., Liang, Z., Gaston, Z., et al.: 3d reconstruction and analysis of wing deformation in free-flying dragonflies. J. Exp. Biol. 215, 3018–3027 (2012)

    Article  Google Scholar 

  5. 5.

    Song, J., Luo, H., Hedrick, T.L.: Three-dimensional flow and lift characteristics of a hovering ruby-throated hummingbird. J. R. Soc. Interface 11, 20140541 (2014)

    Article  Google Scholar 

  6. 6.

    Poggio, T., Torre, V.: Ill-posed Problems and Regularization Analysis in Early Vision. Massachusetts Institute of Technology, Massachusetts (1984)

    Google Scholar 

  7. 7.

    Tikhonov, A.N., Arsenin, V.I.A.: Solutions of Ill-posed Problems. Scripta series in mathematics, Winston (1977)

    Google Scholar 

  8. 8.

    Horn, B.K., Schunck, B.G.: Determining optical flow. In: 1981 Technical Symposium East, International Society for Optics and Photonics, 319–331 (1981)

  9. 9.

    Terzopoulos, D.: Multilevel computational processes for visual surface reconstruction. Comput. Vis. Graph. Image Process. 24, 52–96 (1983)

    Article  Google Scholar 

  10. 10.

    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1, 321–331 (1988)

    Article  MATH  Google Scholar 

  11. 11.

    Terzopoulos, D.: On matching deformable models to images. Technical Report 60, Schlumberger Palo Alto Research (1987)

  12. 12.

    Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, Berlin (2010)

    Google Scholar 

  13. 13.

    Terzopoulos, D.: Regularization of inverse visual problems involving discontinuities. IEEE Trans. Pattern Anal. Mach. Intell. 4, 413–424 (1986)

    Article  Google Scholar 

  14. 14.

    Terzopoulos, D., Witkin, A., Kass, M.: Constraints on deformable models: recovering 3D shape and nonrigid motion. Artif. Intell. 36, 91–123 (1988)

    Article  MATH  Google Scholar 

  15. 15.

    Cohen, L.D.: On active contour models and balloons. CVGIP: Image Underst. 53, 211–218 (1991)

    Article  MATH  Google Scholar 

  16. 16.

    Fua, P., Leclerc, Y.G.: Model driven edge detection. Mach. Vis. Appl. 3, 45–56 (1990)

    Article  Google Scholar 

  17. 17.

    Metaxas, D., Terzopoulos, D.: Constrained deformable superquadrics and nonrigid motion tracking. In Computer Vision and Pattern Recognition, 1991. Proceedings CVPR’91., IEEE Computer Society Conference, 337–343 (1991)

  18. 18.

    Yu, Y., Zhang, S., Li, K., et al.: Deformable models with sparsity constraints for cardiac motion analysis. Med. Image Anal. 18, 927–937 (2014)

    Article  Google Scholar 

  19. 19.

    Cohen, L.D., Cohen, I.: Finite-element methods for active contour models and balloons for 2-d and 3-d images. IEEE Trans. Pattern Anal. Mach. Intell. 15, 1131–1147 (1993)

    Article  Google Scholar 

  20. 20.

    Ferrant, M., Nabavi, A., Macq, B., et al.: Registration of 3-d intraoperative mr images of the brain using a finite-element biomechanical model. IEEE Trans. Medical Imag. 20, 1384–1397 (2001)

    Article  Google Scholar 

  21. 21.

    Bucki, M., Lobos, C., Payan, Y.: A fast and robust patient specific finite element mesh registration technique: application to 60 clinical cases. Med. Image Anal. 14, 303–317 (2010)

  22. 22.

    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  23. 23.

    Ristroph, L., Berman, G.J., Bergou, A.J., et al.: Automated hull reconstruction motion tracking (hrmt) applied to sideways maneuvers of free-flying insects. J. Exp. Biol. 212, 1324–1335 (2009)

    Article  Google Scholar 

  24. 24.

    Geuzaine, C., Remacle, J.F.: Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Meth. Eng. 79, 1309–1331 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  25. 25.

    Fitzgerald, T.: Nonlinear fluid-structure interactions in flapping wing systems. [Ph.D. Thesis], University of Maryland College Park, America (2013)

  26. 26.

    Baumgart, B.G.: Geometric modeling for computer vision. Technical report, DTIC Document (1974)

  27. 27.

    Holzapfel, G.A.: Nonlinear Solid Mechanics. Wiley, Hoboken (2000)

    Google Scholar 

  28. 28.

    Arora, J.: Introduction to optimum design. Academic Press, Cambridge (2004)

    Google Scholar 

  29. 29.

    Antoulas, A.C.: Approximation of large-scale dynamical systems. Society for Industrial and Applied Mathematics, Philadelphia (2005)

    Google Scholar 

  30. 30.

    Sims, T.W.: A Structural Dynamic Analysis of a Manduca Sexta Forewing. [Ph.D. Thesis], Air Force Institute of Technology, America (2010)

  31. 31.

    Vanella, M., Fitzgerald, T., Preidikman, S., et al.: Influence of flexibility on the aerodynamic performance of a hovering wing. J. Exp. Biol. 212, 95–105 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

Support received for this project from the US National Science Foundation (Grant CMMI-1250187) and the US Air Force Office of Scientific Research (Grant FA95501510134) is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tzu-Sheng Shane Hsu.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hsu, TS.S., Fitzgerald, T., Nguyen, V.P. et al. Motion visualization and estimation for flapping wing systems. Acta Mech. Sin. 33, 327–340 (2017). https://doi.org/10.1007/s10409-017-0638-y

Download citation

Keywords

  • Insect flight
  • Deformable body
  • High-speed videography
  • Motion estimation