Acta Mechanica Sinica

, Volume 33, Issue 2, pp 243–249 | Cite as

Effects of adenosine triphosphate concentration on motor force regulation during skeletal muscle contraction

  • J. Wei
  • C. Dong
  • B. Chen
Research Paper


We employ a mechanical model of sarcomere to quantitatively investigate how adenosine triphosphate (ATP) concentration affects motor force regulation during skeletal muscle contraction. Our simulation indicates that there can be negative cross-bridges resisting contraction within the sarcomere and higher ATP concentration would decrease the resistance force from negative cross-bridges by promoting their timely detachment. It is revealed that the motor force is well regulated only when ATP concentration is above a certain level. These predictions may provide insights into the role of ATP in regulating coordination among multiple motors.


Motor force regulation ATP Muscle contraction Myosin 



The project was supported by the National Natural Science Foundation of China (Grants 11372279, 11572285).


  1. 1.
    Schliwa, M., Woehlke, G.: Molecular motors. Nature 422, 759–765 (2003)CrossRefGoogle Scholar
  2. 2.
    Guérin, T., Prost, J., Martin, P., et al.: Coordination and collective properties of molecular motors: theory. Curr. Opin. Cell Biol. 22, 14–20 (2010)CrossRefGoogle Scholar
  3. 3.
    Mao, H.Z., Saha, M., Reyes-Aldrete, E., et al.: Structural and molecular basis for coordination in a viral DNA packaging motor. Cell Rep. 14, 2017–2029 (2016)CrossRefGoogle Scholar
  4. 4.
    Tanner, B.C., Daniel, T.L., Regnier, M.: Sarcomere lattice geometry influences cooperative myosin binding in muscle. PLoS Comput. Biol. 3, e115 (2016)CrossRefGoogle Scholar
  5. 5.
    Piazzesi, G., Reconditi, M., Linari, M., et al.: Skeletal muscle performance determined by modulation of number of myosin motors rather than motor force or stroke size. Cell 131, 784–795 (2007)Google Scholar
  6. 6.
    Chen, B., Gao, H.: Motor force homeostasis in skeletal muscle contraction. Biophys. J. 101, 396–403 (2011)CrossRefGoogle Scholar
  7. 7.
    Dong, C., Chen, B.: Catch-slip bonds can be dispensable for motor force regulation during skeletal muscle contraction. Phys. Rev. E. 92, 012723 (2015)CrossRefGoogle Scholar
  8. 8.
    Chen, B.: Self-regulation of motor force through chemomechanical coupling in skeletal muscle contraction. J. Appl. Mech. 80, 857–865 (2013)Google Scholar
  9. 9.
    Siemankowski, R.F., Wiseman, M.O., White, H.D.: ADP dissociation from actomyosin subfragment 1 is sufficiently slow to limit the unloaded shortening velocity in vertebrate muscle. Proc. Natl. Acad. Sci. USA 82, 658–662 (1985)CrossRefGoogle Scholar
  10. 10.
    Cooke, R., Bialek, W.: Contraction of glycerinated muscle fibers as a function of the ATP concentration. Biophys. J. 28, 241 (1979)CrossRefGoogle Scholar
  11. 11.
    Stienen, G.J., Laarse, W.J.V.D., Elzinga, G.: Dependency of the force–velocity relationships on Mg ATP in different types of muscle fibers from Xenopus laevis. Biophys. J. 53, 849–855 (1988)CrossRefGoogle Scholar
  12. 12.
    Ferenczi, M.A., Goldman, Y.E., Simmons, R.M.: The dependence of force and shortening velocity on substrate concentration in skinned muscle fibres from Rana temporaria. J. Physiol. (Oxford, U.K.) 350, 519–543 (1984)CrossRefGoogle Scholar
  13. 13.
    Erdmann, T., Schwarz, U.S.: Bistability of cell-matrix adhesions resulting from nonlinear receptor-ligand dynamics. Biophys. J. 91, L60–L62 (2006)CrossRefGoogle Scholar
  14. 14.
    Erdmann, T., Schwarz, U.S.: Impact of receptor-ligand distance on adhesion cluster stability. Eur. Phys. J. E 22, 123–137 (2007)CrossRefGoogle Scholar
  15. 15.
    Piazzesi, G., Lombardi, V.: A cross-bridge model that is able to explain mechanical and energetic properties of shortening muscle. Biophys. J. 68, 1966–1979 (1995)CrossRefGoogle Scholar
  16. 16.
    Duke, T.: Molecular model of muscle contraction. Proc. Natl. Acad. Sci. USA 96, 2770–2775 (1999)CrossRefGoogle Scholar
  17. 17.
    Xie, X.S.: Enzyme kinetics, past and present. Science 342, 1457–1459 (2013)Google Scholar
  18. 18.
    Schoenberg, M.: Characterization of the myosin adenosine triphosphate (M.ATP) crossbridge in rabbit and frog skeletal muscle fibers. Biophys. J. 54, 135–148 (1988)CrossRefGoogle Scholar
  19. 19.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977)CrossRefGoogle Scholar
  20. 20.
    Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434 (1976)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Hill, A.: The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. Lond. Ser. B. 126, 136–195 (1938)CrossRefGoogle Scholar
  22. 22.
    Howard, J.: Mechanics of Motor Proteins and the Cytoskeleton. Sinauer Associates, Sunderland (2001)Google Scholar
  23. 23.
    Huxley, A.F., Simmons, R.M.: Mechanical properties of the cross-bridges of frog striated muscle. J. Physiol. (Oxford, U.K.) 218 Suppl, 59–60 (1971)Google Scholar
  24. 24.
    Morgan, K.G., Gangopadhyay, S.S.: Invited review: cross-bridge regulation by thin filament-associated proteins. J. Appl. Physiol. 91, 953–962 (2001)Google Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Engineering MechanicsZhejiang UniversityHangzhouChina

Personalised recommendations