Mechanics of water pore formation in lipid membrane under electric field


Transmembrane water pores are crucial for substance transport through cell membranes via membrane fusion, such as in neural communication. However, the molecular mechanism of water pore formation is not clear. In this study, we apply all-atom molecular dynamics and bias-exchange metadynamics simulations to study the process of water pore formation under an electric field. We show that water molecules can enter a membrane under an electric field and form a water pore of a few nanometers in diameter. These water molecules disturb the interactions between lipid head groups and the ordered arrangement of lipids. Following the movement of water molecules, the lipid head groups are rotated and driven into the hydrophobic region of the membrane. The reorientated lipid head groups inside the membrane form a hydrophilic surface of the water pore. This study reveals the atomic details of how an electric field influences the movement of water molecules and lipid head groups, resulting in water pore formation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Alberts, B., Johnson, A., Lewis, J., et al.: Molecular Biology of the Cell, 5th edn. Garland Science, New York (2007)

    Google Scholar 

  2. 2.

    Gozen, I., Dommersnes, P.: Pore dynamics in lipid membranes. Eur. Phys. J-Spec. Top. 223, 1813–1829 (2014)

    Article  Google Scholar 

  3. 3.

    Sandre, O., Moreaux, L., Brochard-Wyart, F.: Dynamics of transient pores in stretched vesicles. Proc. Natl. Acad. Sci. USA 96, 10591–10596 (1999)

    Article  Google Scholar 

  4. 4.

    Podbilewicz, B.: Virus and cell fusion mechanisms. Annu. Rev. Cell Dev. Biol. 30, 111–139 (2014)

    Article  Google Scholar 

  5. 5.

    Fuhrmans, M., Marelli, G., Smirnova, Y.G., et al.: Mechanics of membrane fusion/pore formation. Chem. Phys. Lipids 185, 109–128 (2015)

    Article  Google Scholar 

  6. 6.

    Pattni, B.S., Chupin, V.V., Torchilin, V.P.: New developments in liposomal drug delivery. Chem. Rev. 115, 10938–10966 (2015)

    Article  Google Scholar 

  7. 7.

    Lai, Y., Zhao, L., Bu, B., et al.: Lipid molecules influence early stages of yeast SNARE-mediated membrane fusion. Phys. Biol. 12, 25003 (2015)

    Article  Google Scholar 

  8. 8.

    He, L., Wu, L.-G.G.: The debate on the kiss-and-run fusion at synapses. Trends Neurosci. 30, 447–455 (2007)

    Article  Google Scholar 

  9. 9.

    Marx, V.: A deep look at synaptic dynamics. Nature 515, 293–297 (2014)

    Article  Google Scholar 

  10. 10.

    Brunger, A.T., Cipriano, D.J., Diao, J.: Towards reconstitution of membrane fusion mediated by SNAREs and other synaptic proteins. Crit. Rev. Biochem. Mol. Biol. 50, 231–241 (2015)

    Article  Google Scholar 

  11. 11.

    Alabi, A.A., Tsien, R.W.: Perspectives on kiss-and-run: role in exocytosis, endocytosis, and neurotransmission. Annu. Rev. Physiol. 75, 393–422 (2013)

    Article  Google Scholar 

  12. 12.

    Chernomordik, L.V., Kozlov, M.M.: Mechanics of membrane fusion. Nat. Struct. Mol. Biol. 15, 675–683 (2008)

    Article  Google Scholar 

  13. 13.

    van Meer, G., Voelker, D.R., Feigenson, G.W.: Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124 (2008)

    Article  Google Scholar 

  14. 14.

    Aihara, H., Miyazaki, J.: Gene transfer into muscle by electroporation in vivo. Nat. Biotechnol. 16, 867–870 (1998)

    Article  Google Scholar 

  15. 15.

    Heller, L.C., Heller, R.: In vivo electroporation for gene therapy. Hum. Gene Ther. 17, 890–897 (2006)

    Article  Google Scholar 

  16. 16.

    Kotnik, T., Frey, W., Sack, M., et al.: Electroporation-based applications in biotechnology. Trends Biotechnol. 33, 480–488 (2015)

    Article  Google Scholar 

  17. 17.

    Weaver, J.C., Chizmadzhev, Y.A.: Theory of electroporation: a review. Bioelectrochem. Bioenerg. 41, 135–160 (1996)

    Article  Google Scholar 

  18. 18.

    Gehl, J.: Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta. Physiol. Scand. 177, 437–447 (2003)

    Article  Google Scholar 

  19. 19.

    Mehierhuert, S., Guy, R.: Physical methods for gene transfer: Improving the kinetics of gene delivery into cells. Adv. Drug Deliv. Rev. 57, 733–753 (2005)

    Article  Google Scholar 

  20. 20.

    Weaver, J.C.: Electroporation: a general phenomenon for manipulating cells and tissues. J. Cell. Biochem. 51, 426–435 (1993)

    Article  Google Scholar 

  21. 21.

    Tieleman, D.P.: The molecular basis of electroporation. BMC Biochem. 5, 10 (2004)

    Article  Google Scholar 

  22. 22.

    Böckmann, R.A., de Groot, B.L., Kakorin, S., et al.: Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations. Biophys. J. 95, 1837–1850 (2008)

    Article  Google Scholar 

  23. 23.

    Fernández, L.M., Marshall, G., Sagués, F., et al.: Structural and kinetic molecular dynamics study of electroporation in cholesterol-containing bilayers. J. Phys. Chem. B 114, 6855–6865 (2010)

    Article  Google Scholar 

  24. 24.

    Hu, Q., Joshi, R.P., Schoenbach, K.H.: Simulations of nanopore formation and phosphatidylserine externalization in lipid membranes subjected to a high-intensity, ultrashort electric pulse. Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 72, 31902 (2005)

    Article  Google Scholar 

  25. 25.

    Tieleman, P.D., Leontiadou, H., Mark, A.E., et al.: Simulation of pore formation in lipid bilayers by mechanical stress and electric fields. J. Am. Chem. Soc. 125, 6382–6383 (2003)

    Article  Google Scholar 

  26. 26.

    Tarek, M.: Membrane electroporation: a molecular dynamics simulation. Biophys. J. 88, 4045–4053 (2005)

    Article  Google Scholar 

  27. 27.

    Casciola, M., Bonhenry, D., Liberti, M., et al.: A molecular dynamic study of cholesterol rich lipid membranes: comparison of electroporation protocols. Bioelectrochemistry 100, 11–17 (2014)

    Article  Google Scholar 

  28. 28.

    Gurtovenko, A.A., Vattulainen, I.: Pore formation coupled to ion transport through lipid membranes as induced by transmembrane ionic charge imbalance: atomistic molecular dynamics study. J. Am. Chem. Soc. 127, 17570–17571 (2005)

    Article  Google Scholar 

  29. 29.

    Melcr, J., Bonhenry, D., Timr, S., et al.: Transmembrane potential modeling: comparison between methods of constant electric field and ion imbalance. J. Chem. Theory. Comput. 12, 2418–2425 (2016)

    Article  Google Scholar 

  30. 30.

    Gurtovenko, A.A., Lyulina, A.S.: Electroporation of asymmetric phospholipid membranes. J. Phys. Chem. B 118, 9909–9918 (2014)

    Article  Google Scholar 

  31. 31.

    Levine, Z.A., Vernier, T.P.: Life cycle of an electropore: field-dependent and field-independent steps in pore creation and annihilation. J. Membr. Biol. 236, 27–36 (2010)

    Article  Google Scholar 

  32. 32.

    Dehez, F., Delemotte, L., Kramar, P., et al.: Evidence of conducting hydrophobic nanopores across membranes in response to an electric field. J. Phys. Chem. C 118, 6752–6757 (2014)

    Article  Google Scholar 

  33. 33.

    Ziegler, M.J., Vernier, P.T.: Interface water dynamics and porating electric fields for phospholipid bilayers. J. Phys. Chem. B 112, 13588–13596 (2008)

    Article  Google Scholar 

  34. 34.

    Ho, M.-C.C., Levine, Z.A., Vernier, P.T.: Nanoscale, electric field-driven water bridges in vacuum gaps and lipid bilayers. J. Membr. Biol. 246, 793–801 (2013)

    Article  Google Scholar 

  35. 35.

    Tokman, M., Lee, J.H., Levine, Z.A., et al.: Electric field-driven water dipoles: nanoscale architecture of electroporation. PLoS ONE 8, e61111 (2013)

    Article  Google Scholar 

  36. 36.

    Vernier, P.T., Levine, Z.A., Gundersen, M.A.: Water bridges in electropermeabilized phospholipid bilayers. Proc. IEEE 101, 494–504 (2013)

    Article  Google Scholar 

  37. 37.

    Vernier, P. T.: Nanoscale restructuring of lipid bilayers in nanosecond electric fields. In: Advanced Electroporation Techniques in Biology and Medicine. CRC Press, 161–174 (2010)

  38. 38.

    Casciola, M., Tarek, M.: A molecular insight into the electro-transfer of small molecules through electropores driven by electric fields. Biochim. Biophys. Acta-Biomembr. 1858, 2278–2289 (2016)

    Article  Google Scholar 

  39. 39.

    Sun, S., Wong, J.T.Y., Zhang, T.-Y.: Atomistic simulations of electroporation in water preembedded membranes. J. Phys. Chem. B 115, 13355–13359 (2011)

    Article  Google Scholar 

  40. 40.

    Polak, A., Tarek, M., Tomšič, M., et al.: Electroporation of archaeal lipid membranes using MD simulations. Bioelectrochemistry 100, 18–26 (2014)

    Article  Google Scholar 

  41. 41.

    Vernier, T.P., Ziegler, M.J.: Nanosecond field alignment of head group and water dipoles in electroporating phospholipid bilayers. J. Phys. Chem. B 111, 12993–12996 (2007)

    Article  Google Scholar 

  42. 42.

    Jo, S., Kim, T., Iyer, V.G., et al.: CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008)

    Article  Google Scholar 

  43. 43.

    Jo, S., Kim, T., Im, W.: Automated builder and database of protein/membrane complexes for molecular dynamics simulations. PLoS ONE 2, e880 (2007)

    Article  Google Scholar 

  44. 44.

    Jo, S., Lim, J.B., Klauda, J.B., et al.: CHARMM-GUI Membrane builder for mixed bilayers and its application to yeast membranes. Biophys. J. 97, 50–58 (2009)

    Article  Google Scholar 

  45. 45.

    Lee, J., Cheng, X., Swails, J.M., et al.: CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 12, 405–413 (2015)

    Article  Google Scholar 

  46. 46.

    Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., et al.: Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926 (1983)

    Article  Google Scholar 

  47. 47.

    Abraham, M., Murtola, T., Schulz, R., et al.: GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015)

    Article  Google Scholar 

  48. 48.

    Klauda, J.B., Venable, R.M., Freites, A.J., et al.: Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B 114, 7830–7843 (2010)

    Article  Google Scholar 

  49. 49.

    Bussi, G., Donadio, D., Parrinello, M.: Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 14101 (2007)

    Article  Google Scholar 

  50. 50.

    Parrinello, M.: Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182 (1981)

    Article  Google Scholar 

  51. 51.

    Hess, B.: P-LINCS: a parallel linear constraint solver for molecular simulation. J. Chem. Theory Comput. 4, 116–122 (2008)

    Article  Google Scholar 

  52. 52.

    Essmann, U., Perera, L., Berkowitz, M.L., et al.: A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577 (1995)

    Article  Google Scholar 

  53. 53.

    Humphrey, W., Dalke, A., Schulten, K.: VMD: Visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996)

    Article  Google Scholar 

  54. 54.

    Limongelli, V., Bonomi, M., Parrinello, M.: Funnel metadynamics as accurate binding free-energy method. Proc. Natl. Acad. Sci. USA 110, 6358–6363 (2013)

    Article  Google Scholar 

  55. 55.

    Barducci, A., Bonomi, M., Parrinello, M.: Metadynamics. Wires. Comput. Mol. Sci. 1, 826–843 (2011)

    Article  Google Scholar 

  56. 56.

    Spiwok, V., Lipovová, P., Králová, B.: Metadynamics in essential coordinates: free energy simulation of conformational changes. J. Phys. Chem. B 111, 3073–3076 (2007)

    Article  Google Scholar 

  57. 57.

    Barducci, A., Bussi, G., Parrinello, M.: Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys. Rev. Lett. 100, 20603 (2008)

    Article  Google Scholar 

  58. 58.

    Li, D., Liu, M.S., Ji, B.: Mapping the dynamics landscape of conformational transitions in enzyme: the adenylate kinase case. Biophys. J. 109, 647–660 (2015)

    Article  Google Scholar 

  59. 59.

    Bonomi, M., Branduardi, D., Bussi, G., et al.: PLUMED: a portable plugin for free-energy calculations with molecular dynamics. Comput. Phys. Commun. 180, 1961–1972 (2009)

  60. 60.

    Biarnés, X., Pietrucci, F., Marinelli, F., et al.: METAGUI. A VMD interface for analyzing metadynamics and molecular dynamics simulations. Comput. Phys. Commun. 183, 203–211 (2012)

  61. 61.

    Sun, S., Wong, J.T.Y., Zhang, T.-Y.: Molecular dynamics simulations of phase transition of lamellar lipid membrane in water under an electric field. Soft Matter 7, 147–152 (2010)

  62. 62.

    Li, D., Ji, B., Hwang, K.-C., et al.: Strength of hydrogen bond network takes crucial roles in the dissociation process of inhibitors from the HIV-1 protease binding pocket. PLoS ONE 6, e19268 (2011)

    Article  Google Scholar 

  63. 63.

    Li, D.-C., Ji, B.-H.: Free energy calculation of single molecular interaction using Jarzynski’s identity method: the case of HIV-1 protease inhibitor system. Acta. Mech. Sin. 28, 891–903 (2012)

    Article  Google Scholar 

  64. 64.

    Xu, C., Li, D., Cheng, Y., et al.: Pulling out a peptide chain from \({\upbeta }\)-sheet crystallite: propagation of instability of H-bonds under shear force. Acta. Mech. Sin. 31, 416–424 (2015)

    Article  Google Scholar 

  65. 65.

    Xu, Z., Li, D., Ji, B.: Quantification of the stiffness and strength of cadherin ectodomain binding with different ions. Theo. Appl. Mech. Lett. 4, 034001 (2014)

    Article  Google Scholar 

  66. 66.

    Cheng, Y., Koh, L.-D.D., Li, D., et al.: On the strength of \({\upbeta }\)-sheet crystallites of Bombyx mori silk fibroin. J. R. Soc. Interface 11, 20140305 (2014)

    Article  Google Scholar 

  67. 67.

    Cheng, Y., Koh, L.-D., Li, D., et al.: Peptide–Graphene interactions enhance the mechanical properties of silk fibroin. ACS Appl. Mater. Inter. 7, 21787–21796 (2015)

    Article  Google Scholar 

  68. 68.

    Tepper, H.L., Voth, G.A.: Mechanisms of passive ion permeation through lipid bilayers: insights from simulations. J. Phys. Chem. B 110, 21327–21337 (2006)

    Article  Google Scholar 

  69. 69.

    Al-Sakere, B., Andre, F., Bernat, C., et al.: Tumor ablation with irreversible electroporation. PLoS ONE 2, e1135 (2007)

    Article  Google Scholar 

  70. 70.

    Gurtovenko, A.A., Vattulainen, I.: Ion leakage through transient water pores in protein-free lipid membranes driven by transmembrane ionic charge imbalance. Biophys. J. 92, 1878–1890 (2007)

    Article  Google Scholar 

  71. 71.

    Rems, L., Ušaj, M., Kandušer, M., et al.: Cell electrofusion using nanosecond electric pulses. Sci. Rep. 3, 3382 (2013)

    Article  Google Scholar 

  72. 72.

    Zimmermann, U., Vienken, J.: Electric field-induced cell-to-cell fusion. J. Membr. Biol. 67, 165–182 (1982)

    Article  Google Scholar 

  73. 73.

    Kotnik, T.: Lightning-triggered electroporation and electrofusion as possible contributors to natural horizontal gene transfer. Phys. Life Rev. 10, 351–370 (2013)

    Article  Google Scholar 

  74. 74.

    Bu, B., Tian, Z., Li, D., et al.: High transmembrane voltage raised by close contact initiates fusion pore. Front. Mol. Neurosci. 9, 136 (2016)

    Article  Google Scholar 

Download references


The project was supported by the National Natural Science Foundation of China (Grants 11372042, 11221202, 11532009, and 11202026)

Author information



Corresponding authors

Correspondence to Dechang Li or Baohua Ji.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bu, B., Li, D., Diao, J. et al. Mechanics of water pore formation in lipid membrane under electric field. Acta Mech. Sin. 33, 234–242 (2017).

Download citation


  • Cell membrane
  • Membrane fusion
  • Water pore formation
  • Electric field
  • Molecular dynamics simulation