Acta Mechanica Sinica

, Volume 33, Issue 2, pp 234–242 | Cite as

Mechanics of water pore formation in lipid membrane under electric field

Research Paper

Abstract

Transmembrane water pores are crucial for substance transport through cell membranes via membrane fusion, such as in neural communication. However, the molecular mechanism of water pore formation is not clear. In this study, we apply all-atom molecular dynamics and bias-exchange metadynamics simulations to study the process of water pore formation under an electric field. We show that water molecules can enter a membrane under an electric field and form a water pore of a few nanometers in diameter. These water molecules disturb the interactions between lipid head groups and the ordered arrangement of lipids. Following the movement of water molecules, the lipid head groups are rotated and driven into the hydrophobic region of the membrane. The reorientated lipid head groups inside the membrane form a hydrophilic surface of the water pore. This study reveals the atomic details of how an electric field influences the movement of water molecules and lipid head groups, resulting in water pore formation.

Keywords

Cell membrane Membrane fusion Water pore formation Electric field Molecular dynamics simulation 

References

  1. 1.
    Alberts, B., Johnson, A., Lewis, J., et al.: Molecular Biology of the Cell, 5th edn. Garland Science, New York (2007)Google Scholar
  2. 2.
    Gozen, I., Dommersnes, P.: Pore dynamics in lipid membranes. Eur. Phys. J-Spec. Top. 223, 1813–1829 (2014)CrossRefGoogle Scholar
  3. 3.
    Sandre, O., Moreaux, L., Brochard-Wyart, F.: Dynamics of transient pores in stretched vesicles. Proc. Natl. Acad. Sci. USA 96, 10591–10596 (1999)CrossRefGoogle Scholar
  4. 4.
    Podbilewicz, B.: Virus and cell fusion mechanisms. Annu. Rev. Cell Dev. Biol. 30, 111–139 (2014)CrossRefGoogle Scholar
  5. 5.
    Fuhrmans, M., Marelli, G., Smirnova, Y.G., et al.: Mechanics of membrane fusion/pore formation. Chem. Phys. Lipids 185, 109–128 (2015)CrossRefGoogle Scholar
  6. 6.
    Pattni, B.S., Chupin, V.V., Torchilin, V.P.: New developments in liposomal drug delivery. Chem. Rev. 115, 10938–10966 (2015)CrossRefGoogle Scholar
  7. 7.
    Lai, Y., Zhao, L., Bu, B., et al.: Lipid molecules influence early stages of yeast SNARE-mediated membrane fusion. Phys. Biol. 12, 25003 (2015)CrossRefGoogle Scholar
  8. 8.
    He, L., Wu, L.-G.G.: The debate on the kiss-and-run fusion at synapses. Trends Neurosci. 30, 447–455 (2007)CrossRefGoogle Scholar
  9. 9.
    Marx, V.: A deep look at synaptic dynamics. Nature 515, 293–297 (2014)CrossRefGoogle Scholar
  10. 10.
    Brunger, A.T., Cipriano, D.J., Diao, J.: Towards reconstitution of membrane fusion mediated by SNAREs and other synaptic proteins. Crit. Rev. Biochem. Mol. Biol. 50, 231–241 (2015)CrossRefGoogle Scholar
  11. 11.
    Alabi, A.A., Tsien, R.W.: Perspectives on kiss-and-run: role in exocytosis, endocytosis, and neurotransmission. Annu. Rev. Physiol. 75, 393–422 (2013)CrossRefGoogle Scholar
  12. 12.
    Chernomordik, L.V., Kozlov, M.M.: Mechanics of membrane fusion. Nat. Struct. Mol. Biol. 15, 675–683 (2008)CrossRefGoogle Scholar
  13. 13.
    van Meer, G., Voelker, D.R., Feigenson, G.W.: Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124 (2008)CrossRefGoogle Scholar
  14. 14.
    Aihara, H., Miyazaki, J.: Gene transfer into muscle by electroporation in vivo. Nat. Biotechnol. 16, 867–870 (1998)CrossRefGoogle Scholar
  15. 15.
    Heller, L.C., Heller, R.: In vivo electroporation for gene therapy. Hum. Gene Ther. 17, 890–897 (2006)CrossRefGoogle Scholar
  16. 16.
    Kotnik, T., Frey, W., Sack, M., et al.: Electroporation-based applications in biotechnology. Trends Biotechnol. 33, 480–488 (2015)CrossRefGoogle Scholar
  17. 17.
    Weaver, J.C., Chizmadzhev, Y.A.: Theory of electroporation: a review. Bioelectrochem. Bioenerg. 41, 135–160 (1996)CrossRefGoogle Scholar
  18. 18.
    Gehl, J.: Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta. Physiol. Scand. 177, 437–447 (2003)CrossRefGoogle Scholar
  19. 19.
    Mehierhuert, S., Guy, R.: Physical methods for gene transfer: Improving the kinetics of gene delivery into cells. Adv. Drug Deliv. Rev. 57, 733–753 (2005)CrossRefGoogle Scholar
  20. 20.
    Weaver, J.C.: Electroporation: a general phenomenon for manipulating cells and tissues. J. Cell. Biochem. 51, 426–435 (1993)CrossRefGoogle Scholar
  21. 21.
    Tieleman, D.P.: The molecular basis of electroporation. BMC Biochem. 5, 10 (2004)CrossRefGoogle Scholar
  22. 22.
    Böckmann, R.A., de Groot, B.L., Kakorin, S., et al.: Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations. Biophys. J. 95, 1837–1850 (2008)CrossRefGoogle Scholar
  23. 23.
    Fernández, L.M., Marshall, G., Sagués, F., et al.: Structural and kinetic molecular dynamics study of electroporation in cholesterol-containing bilayers. J. Phys. Chem. B 114, 6855–6865 (2010)CrossRefGoogle Scholar
  24. 24.
    Hu, Q., Joshi, R.P., Schoenbach, K.H.: Simulations of nanopore formation and phosphatidylserine externalization in lipid membranes subjected to a high-intensity, ultrashort electric pulse. Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 72, 31902 (2005)CrossRefGoogle Scholar
  25. 25.
    Tieleman, P.D., Leontiadou, H., Mark, A.E., et al.: Simulation of pore formation in lipid bilayers by mechanical stress and electric fields. J. Am. Chem. Soc. 125, 6382–6383 (2003)CrossRefGoogle Scholar
  26. 26.
    Tarek, M.: Membrane electroporation: a molecular dynamics simulation. Biophys. J. 88, 4045–4053 (2005)CrossRefGoogle Scholar
  27. 27.
    Casciola, M., Bonhenry, D., Liberti, M., et al.: A molecular dynamic study of cholesterol rich lipid membranes: comparison of electroporation protocols. Bioelectrochemistry 100, 11–17 (2014)CrossRefGoogle Scholar
  28. 28.
    Gurtovenko, A.A., Vattulainen, I.: Pore formation coupled to ion transport through lipid membranes as induced by transmembrane ionic charge imbalance: atomistic molecular dynamics study. J. Am. Chem. Soc. 127, 17570–17571 (2005)CrossRefGoogle Scholar
  29. 29.
    Melcr, J., Bonhenry, D., Timr, S., et al.: Transmembrane potential modeling: comparison between methods of constant electric field and ion imbalance. J. Chem. Theory. Comput. 12, 2418–2425 (2016)CrossRefGoogle Scholar
  30. 30.
    Gurtovenko, A.A., Lyulina, A.S.: Electroporation of asymmetric phospholipid membranes. J. Phys. Chem. B 118, 9909–9918 (2014)CrossRefGoogle Scholar
  31. 31.
    Levine, Z.A., Vernier, T.P.: Life cycle of an electropore: field-dependent and field-independent steps in pore creation and annihilation. J. Membr. Biol. 236, 27–36 (2010)CrossRefGoogle Scholar
  32. 32.
    Dehez, F., Delemotte, L., Kramar, P., et al.: Evidence of conducting hydrophobic nanopores across membranes in response to an electric field. J. Phys. Chem. C 118, 6752–6757 (2014)CrossRefGoogle Scholar
  33. 33.
    Ziegler, M.J., Vernier, P.T.: Interface water dynamics and porating electric fields for phospholipid bilayers. J. Phys. Chem. B 112, 13588–13596 (2008)CrossRefGoogle Scholar
  34. 34.
    Ho, M.-C.C., Levine, Z.A., Vernier, P.T.: Nanoscale, electric field-driven water bridges in vacuum gaps and lipid bilayers. J. Membr. Biol. 246, 793–801 (2013)CrossRefGoogle Scholar
  35. 35.
    Tokman, M., Lee, J.H., Levine, Z.A., et al.: Electric field-driven water dipoles: nanoscale architecture of electroporation. PLoS ONE 8, e61111 (2013)CrossRefGoogle Scholar
  36. 36.
    Vernier, P.T., Levine, Z.A., Gundersen, M.A.: Water bridges in electropermeabilized phospholipid bilayers. Proc. IEEE 101, 494–504 (2013)CrossRefGoogle Scholar
  37. 37.
    Vernier, P. T.: Nanoscale restructuring of lipid bilayers in nanosecond electric fields. In: Advanced Electroporation Techniques in Biology and Medicine. CRC Press, 161–174 (2010)Google Scholar
  38. 38.
    Casciola, M., Tarek, M.: A molecular insight into the electro-transfer of small molecules through electropores driven by electric fields. Biochim. Biophys. Acta-Biomembr. 1858, 2278–2289 (2016)CrossRefGoogle Scholar
  39. 39.
    Sun, S., Wong, J.T.Y., Zhang, T.-Y.: Atomistic simulations of electroporation in water preembedded membranes. J. Phys. Chem. B 115, 13355–13359 (2011)CrossRefGoogle Scholar
  40. 40.
    Polak, A., Tarek, M., Tomšič, M., et al.: Electroporation of archaeal lipid membranes using MD simulations. Bioelectrochemistry 100, 18–26 (2014)CrossRefGoogle Scholar
  41. 41.
    Vernier, T.P., Ziegler, M.J.: Nanosecond field alignment of head group and water dipoles in electroporating phospholipid bilayers. J. Phys. Chem. B 111, 12993–12996 (2007)CrossRefGoogle Scholar
  42. 42.
    Jo, S., Kim, T., Iyer, V.G., et al.: CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008)CrossRefGoogle Scholar
  43. 43.
    Jo, S., Kim, T., Im, W.: Automated builder and database of protein/membrane complexes for molecular dynamics simulations. PLoS ONE 2, e880 (2007)CrossRefGoogle Scholar
  44. 44.
    Jo, S., Lim, J.B., Klauda, J.B., et al.: CHARMM-GUI Membrane builder for mixed bilayers and its application to yeast membranes. Biophys. J. 97, 50–58 (2009)CrossRefGoogle Scholar
  45. 45.
    Lee, J., Cheng, X., Swails, J.M., et al.: CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 12, 405–413 (2015)CrossRefGoogle Scholar
  46. 46.
    Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., et al.: Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926 (1983)CrossRefGoogle Scholar
  47. 47.
    Abraham, M., Murtola, T., Schulz, R., et al.: GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015)CrossRefGoogle Scholar
  48. 48.
    Klauda, J.B., Venable, R.M., Freites, A.J., et al.: Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B 114, 7830–7843 (2010)CrossRefGoogle Scholar
  49. 49.
    Bussi, G., Donadio, D., Parrinello, M.: Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 14101 (2007)CrossRefGoogle Scholar
  50. 50.
    Parrinello, M.: Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182 (1981)CrossRefGoogle Scholar
  51. 51.
    Hess, B.: P-LINCS: a parallel linear constraint solver for molecular simulation. J. Chem. Theory Comput. 4, 116–122 (2008)CrossRefGoogle Scholar
  52. 52.
    Essmann, U., Perera, L., Berkowitz, M.L., et al.: A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577 (1995)CrossRefGoogle Scholar
  53. 53.
    Humphrey, W., Dalke, A., Schulten, K.: VMD: Visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996)CrossRefGoogle Scholar
  54. 54.
    Limongelli, V., Bonomi, M., Parrinello, M.: Funnel metadynamics as accurate binding free-energy method. Proc. Natl. Acad. Sci. USA 110, 6358–6363 (2013)CrossRefGoogle Scholar
  55. 55.
    Barducci, A., Bonomi, M., Parrinello, M.: Metadynamics. Wires. Comput. Mol. Sci. 1, 826–843 (2011)CrossRefGoogle Scholar
  56. 56.
    Spiwok, V., Lipovová, P., Králová, B.: Metadynamics in essential coordinates: free energy simulation of conformational changes. J. Phys. Chem. B 111, 3073–3076 (2007)CrossRefGoogle Scholar
  57. 57.
    Barducci, A., Bussi, G., Parrinello, M.: Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys. Rev. Lett. 100, 20603 (2008)CrossRefGoogle Scholar
  58. 58.
    Li, D., Liu, M.S., Ji, B.: Mapping the dynamics landscape of conformational transitions in enzyme: the adenylate kinase case. Biophys. J. 109, 647–660 (2015)CrossRefGoogle Scholar
  59. 59.
    Bonomi, M., Branduardi, D., Bussi, G., et al.: PLUMED: a portable plugin for free-energy calculations with molecular dynamics. Comput. Phys. Commun. 180, 1961–1972 (2009)Google Scholar
  60. 60.
    Biarnés, X., Pietrucci, F., Marinelli, F., et al.: METAGUI. A VMD interface for analyzing metadynamics and molecular dynamics simulations. Comput. Phys. Commun. 183, 203–211 (2012)Google Scholar
  61. 61.
    Sun, S., Wong, J.T.Y., Zhang, T.-Y.: Molecular dynamics simulations of phase transition of lamellar lipid membrane in water under an electric field. Soft Matter 7, 147–152 (2010)Google Scholar
  62. 62.
    Li, D., Ji, B., Hwang, K.-C., et al.: Strength of hydrogen bond network takes crucial roles in the dissociation process of inhibitors from the HIV-1 protease binding pocket. PLoS ONE 6, e19268 (2011)CrossRefGoogle Scholar
  63. 63.
    Li, D.-C., Ji, B.-H.: Free energy calculation of single molecular interaction using Jarzynski’s identity method: the case of HIV-1 protease inhibitor system. Acta. Mech. Sin. 28, 891–903 (2012)CrossRefGoogle Scholar
  64. 64.
    Xu, C., Li, D., Cheng, Y., et al.: Pulling out a peptide chain from \({\upbeta }\)-sheet crystallite: propagation of instability of H-bonds under shear force. Acta. Mech. Sin. 31, 416–424 (2015)CrossRefGoogle Scholar
  65. 65.
    Xu, Z., Li, D., Ji, B.: Quantification of the stiffness and strength of cadherin ectodomain binding with different ions. Theo. Appl. Mech. Lett. 4, 034001 (2014)CrossRefGoogle Scholar
  66. 66.
    Cheng, Y., Koh, L.-D.D., Li, D., et al.: On the strength of \({\upbeta }\)-sheet crystallites of Bombyx mori silk fibroin. J. R. Soc. Interface 11, 20140305 (2014)CrossRefGoogle Scholar
  67. 67.
    Cheng, Y., Koh, L.-D., Li, D., et al.: Peptide–Graphene interactions enhance the mechanical properties of silk fibroin. ACS Appl. Mater. Inter. 7, 21787–21796 (2015)CrossRefGoogle Scholar
  68. 68.
    Tepper, H.L., Voth, G.A.: Mechanisms of passive ion permeation through lipid bilayers: insights from simulations. J. Phys. Chem. B 110, 21327–21337 (2006)CrossRefGoogle Scholar
  69. 69.
    Al-Sakere, B., Andre, F., Bernat, C., et al.: Tumor ablation with irreversible electroporation. PLoS ONE 2, e1135 (2007)CrossRefGoogle Scholar
  70. 70.
    Gurtovenko, A.A., Vattulainen, I.: Ion leakage through transient water pores in protein-free lipid membranes driven by transmembrane ionic charge imbalance. Biophys. J. 92, 1878–1890 (2007)CrossRefGoogle Scholar
  71. 71.
    Rems, L., Ušaj, M., Kandušer, M., et al.: Cell electrofusion using nanosecond electric pulses. Sci. Rep. 3, 3382 (2013)CrossRefGoogle Scholar
  72. 72.
    Zimmermann, U., Vienken, J.: Electric field-induced cell-to-cell fusion. J. Membr. Biol. 67, 165–182 (1982)CrossRefGoogle Scholar
  73. 73.
    Kotnik, T.: Lightning-triggered electroporation and electrofusion as possible contributors to natural horizontal gene transfer. Phys. Life Rev. 10, 351–370 (2013)CrossRefGoogle Scholar
  74. 74.
    Bu, B., Tian, Z., Li, D., et al.: High transmembrane voltage raised by close contact initiates fusion pore. Front. Mol. Neurosci. 9, 136 (2016)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Biomechanics and Biomaterials Laboratory, Department of Applied MechanicsBeijing Institute of TechnologyBeijingChina
  2. 2.Department of Cancer Biology, College of MedicineUniversity of CincinnatiCincinnatiUSA

Personalised recommendations