Acta Mechanica Sinica

, Volume 33, Issue 3, pp 508–515 | Cite as

The relation between a microscopic threshold-force model and macroscopic models of adhesion

  • Srivatsan Hulikal
  • Kaushik Bhattacharya
  • Nadia Lapusta
Research Paper


This paper continues our recent work on the relationship between discrete contact interactions at the microscopic scale and continuum contact interactions at the macroscopic scale (Hulikal et al., J. Mech. Phys. Solids 76, 144–161, 2015). The focus of this work is on adhesion. We show that a collection of a large number of discrete elements governed by a threshold-force based model at the microscopic scale collectively gives rise to continuum fracture mechanics at the macroscopic scale. A key step is the introduction of an efficient numerical method that enables the computation of a large number of discrete contacts. Finally, while this work focuses on scaling laws, the methodology introduced in this paper can also be used to study rough-surface adhesion.


Adhesion Threshold-force model Johnson-Kendall-Roberts (JKR) theory Fracture Fast Multipole Method 



We gratefully acknowledge the support for this study from the National Science Foundation of the United States (Grant EAR 1142183) and the Terrestrial Hazards Observations and Reporting Center (THOR) at the California Institute of Technology.


  1. 1.
    Maboudian, R., Howe, R.T.: Critical review: adhesion in surface micromechanical structures. J. Vac. Sci. Technol. B 15, 1–20 (1997)CrossRefGoogle Scholar
  2. 2.
    Geim, A.K., Dubonos, S.V., Grigorieva, I.V., et al.: Microfabricated adhesive mimicking gecko foot-hair. Nat. Mater. 2, 461–463 (2003)CrossRefGoogle Scholar
  3. 3.
    Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. Proc. R. Soc. London. Ser A 324, 301–313 (1971)CrossRefGoogle Scholar
  4. 4.
    Fuller, K.N.G., Tabor, D.F.R.S.: The effect of surface roughness on the adhesion of elastic solids. Proc. R. Soc. London. Ser. A 345, 327–342 (1975)CrossRefGoogle Scholar
  5. 5.
    Horn, R.G., Israelachvili, J.N., Pribac, F.: Measurement of the deformation and adhesion of solids in contact. J. Colloid Interface Sci. 115, 480–492 (1987)CrossRefGoogle Scholar
  6. 6.
    Chu, Y.S., Dufour, S., Thiery, J.P., et al.: Johnson–Kendall–Roberts theory applied to living cells. Phys. Rev. Lett. 94, 028102 (2005)CrossRefGoogle Scholar
  7. 7.
    Maugis, D.: Adhesion of spheres: the JKR-DMT transition using a Dugdale model. J. Colloid Interface Sci. 150, 243–269 (1992)CrossRefGoogle Scholar
  8. 8.
    Hulikal, S., Bhattacharya, K., Lapusta, N.: Collective behavior of viscoelastic asperities as a model for static and kinetic friction. J. Mech. Phys. Solids 76, 144–161 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Webster, M.N., Sayles, R.S.: A numerical model for the elastic frictionless contact of real rough surfaces. J. Tribol. 108, 314–320 (1986)CrossRefGoogle Scholar
  10. 10.
    Polonsky, I.A., Keer, L.M.: A numerical method for solving rough contact problems based on the multi-level multi-summation and conjugate gradient techniques. Wear 231, 206–219 (1999)CrossRefGoogle Scholar
  11. 11.
    Bora, C.K., Plesha, M.E., Carpick, R.W.: A numerical contact model based on real surface topography. Tribol. Lett. 50, 331–347 (2013)CrossRefGoogle Scholar
  12. 12.
    Derjaguin, B.V., Muller, V.M., Toporov, Y.P.: Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 53, 314–326 (1975)CrossRefGoogle Scholar
  13. 13.
    Tabor, D.: Surface forces and surface interactions. J. Colloid Interface Sci. 58, 2–13 (1977)CrossRefGoogle Scholar
  14. 14.
    Pohrt, R., Popov, V.L.: Adhesive contact simulation of elastic solids using local mesh-dependent detachment criterion in boundary elements method. Facta Univ. Ser.: Mech. Eng. 13, 3–10 (2015)Google Scholar
  15. 15.
    Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1987)Google Scholar
  16. 16.
    Love, A.E.H.: The stress produced in a semi-infinite solid by pressure on part of the boundary. Philos. Trans. R. Soc. of London, Ser. A 228, 377–420 (1929)Google Scholar
  17. 17.
    Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73, 325–348 (1987)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Srivatsan Hulikal
    • 1
  • Kaushik Bhattacharya
    • 2
  • Nadia Lapusta
    • 2
  1. 1.School of EngineeringBrown UniversityProvidenceUSA
  2. 2.Department of Mechanical and Civil EngineeringCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations