Acta Mechanica Sinica

, Volume 33, Issue 2, pp 222–233 | Cite as

Growing actin networks regulated by obstacle size and shape

Research Paper

Abstract

Growing actin networks provide the driving force for the motility of cells and intracellular pathogens. Based on the molecular-level processes of actin polymerization, branching, capping, and depolymerization, we have developed a modeling framework to simulate the stochastic and cooperative behaviors of growing actin networks in propelling obstacles, with an emphasis on the size and shape effects on work capacity and filament orientation in the growing process. Our results show that the characteristic size of obstacles changes the protrusion power per unit length, without influencing the orientation distribution of actin filaments in growing networks. In contrast, the geometry of obstacles has a profound effect on filament patterning, which influences the orientation of filaments differently when the drag coefficient of environment is small, intermediate, or large. We also discuss the role of various parameters, such as the aspect ratio of obstacles, branching rate, and capping rate, in affecting the protrusion power of network growth.

Keywords

Actin network Growth dynamics Monte Carlo simulation Size effect Shape effect 

Notes

Acknowledgements

The project was supported by the National Natural Science Foundation of China (Grants 11321202, 11672268) and the Zhejiang Provincial Natural Science Foundation of China (Grant LR16A020001).

References

  1. 1.
    Pollard, T.D., Cooper, J.A.: Actin, a central player in cell shape and movement. Science 326, 1208–1212 (2009)CrossRefGoogle Scholar
  2. 2.
    Dickinson, R.B.: Models for actin polymerization motors. J. Math. Biol. 58, 81–103 (2009)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Loisel, T.P., Boujemaa, R., Pantaloni, D., et al.: Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 401, 613–616 (1999)Google Scholar
  4. 4.
    Lin, Y., Shenoy, V.B., Hu, B., et al.: A microscopic formulation for the actin-driven motion of listeria in curved paths. Biophys. J. 99, 1043–1052 (2010)CrossRefGoogle Scholar
  5. 5.
    Lin, Y.: Mechanics model for actin-based motility. Phys. Rev. E 79, 021916 (2009)CrossRefGoogle Scholar
  6. 6.
    Marcy, Y., Prost, J., Carlier, M.F., et al.: Forces generated during actin-based propulsion: a direct measurement by micromanipulation. Proc. Natl. Acad. Sci. 101, 5992–5997 (2004)CrossRefGoogle Scholar
  7. 7.
    Pollard, T.D., Blanchoin, L., Mullins, R.D.: Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu. Rev. Biophys. Biomol. Struct. 29, 545–576 (2000)CrossRefGoogle Scholar
  8. 8.
    Fletcher, D.A., Mullins, D.: Cell mechanics and the cytoskeleton. Nature 463, 485–492 (2010)CrossRefGoogle Scholar
  9. 9.
    Schaus, T.E., Taylor, E.W., Borisy, G.G.: Self-organization of actin filament orientation in the dendritic-nucleation/array-treadmilling model. Proc. Natl. Acad. Sci. 104, 7086–7091 (2007)CrossRefGoogle Scholar
  10. 10.
    Heinemann, F., Doschke, H., Radmacher, M.: Keratocyte lamellipodial protrusion is characterized by a concave force-velocity relation. Biophys. J. 100, 1420–1427 (2011)CrossRefGoogle Scholar
  11. 11.
    McGrath, J.L., Eungdamrong, N.J., Fisher, C.I., et al.: The force-velocity relationship for the actin-based motility of listeria monocytogenes. Curr. Biol. 13, 329–332 (2003)CrossRefGoogle Scholar
  12. 12.
    Parekh, S.H., Chaudhuri, O., Theriot, J.A., et al.: Loading history determines the velocity of actin-network growth. Nat. Cell Biol. 7, 1219–1223 (2005)CrossRefGoogle Scholar
  13. 13.
    Prass, M., Jacobson, K., Mogilner, A., et al.: Direct measurement of the lamellipodial protrusive force in a migrating cell. J. Cell Biol. 174, 767–772 (2006)CrossRefGoogle Scholar
  14. 14.
    Zimmermann, J., Brunner, C., Enculescu, M., et al.: Actin filament elasticity and retrograde flow shape the force-velocity relation of motile cells. Biophys. J. 102, 287–295 (2012)CrossRefGoogle Scholar
  15. 15.
    Schreiber, C.H., Stewart, M., Duke, T.: Simulation of cell motility that reproduces the force-velocity relationship. Proc. Natl. Acad. Sci. 107, 9141–9146 (2010)CrossRefGoogle Scholar
  16. 16.
    Smith, D.B., Liu, J.: Branching and capping determine the force-velocity relationships of branching actin networks. Phys. Biol. 10, 016004 (2013)CrossRefGoogle Scholar
  17. 17.
    Lee, K.C., Liu, A.J.: Force-velocity relation for actin-polymerization-driven motility from brownian dynamics simulations. Biophys. J. 97, 1295–1304 (2009)CrossRefGoogle Scholar
  18. 18.
    Xu, G.K., Yang, C., Du, J., et al.: Integrin activation and internalization mediated by extracellular matrix elasticity: a biomechanical model. J. Biomech. 47, 1479–1484 (2014)CrossRefGoogle Scholar
  19. 19.
    Jiang, H.Y., Qian, J., Lin, Y., et al.: Aggregation dynamics of molecular bonds between compliant materials. Soft Matter 11, 2812–2820 (2015)CrossRefGoogle Scholar
  20. 20.
    Li, D.C., Ji, B.H.: Predicted rupture force of a single molecular bond becomes rate independent at ultralow loading rates. Phys. Rev. Lett. 112, 078302 (2014)CrossRefGoogle Scholar
  21. 21.
    Li, D.C., Ji, B.H.: Crucial roles of bond rebinding in rupture behaviors of single molecular bond at ultralow loading rates. Int. J. Appl. Mech. 7, 1550015 (2015)CrossRefGoogle Scholar
  22. 22.
    Maly, I.V., Borisy, G.G.: Self-organization of a propulsive actin network as an evolutionary process. Proc. Natl. Acad. Sci. 98, 11324–11329 (2001)CrossRefGoogle Scholar
  23. 23.
    Weichsel, J., Schwarz, U.S.: Two competing orientation patterns explain experimentally observed anomalies in growing actin networks. Proc. Natl. Acad. Sci. 107, 6304–6309 (2010)CrossRefGoogle Scholar
  24. 24.
    Weichsel, J., Schwarz, U.S.: Mesoscopic model for filament orientation in growing actin networks: the role of obstacle geometry. N. J. Phys. 15, 035006 (2013)CrossRefGoogle Scholar
  25. 25.
    Mogilner, A., Rubinstein, B.: The physics of filopodial protrusion. Biophys. J. 89, 782–795 (2005)CrossRefGoogle Scholar
  26. 26.
    Schaus, T.E., Borisy, G.G.: Performance of a population of independent filaments in lamellipodial protrusion. Biophys. J. 95, 1393–1411 (2008)CrossRefGoogle Scholar
  27. 27.
    Gardel, M.L., Shin, J.H., MacKintosh, F.C., et al.: Elastic behavior of cross-linked and bundled actin networks. Science 304, 1301–1305 (2004)CrossRefGoogle Scholar
  28. 28.
    Mogilner, A., Oster, G.: Cell motility driven by actin polymerization. Biophys. J. 71, 3030–3045 (1996)CrossRefGoogle Scholar
  29. 29.
    Carlsson, A.E.: Growth velocities of branched actin networks. Biophys. J. 84, 2907–2918 (2003)CrossRefGoogle Scholar
  30. 30.
    Mullins, R.D., Heuser, J.A., Pollard, T.D.: The interaction of arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc. Natl. Acad. Sci. 95, 6181–6186 (1998)CrossRefGoogle Scholar
  31. 31.
    Schafer, D.A., Jennings, P.B., Cooper, J.A.: Dynamics of capping protein and actin assembly in vitro: uncapping barbed ends by polyphosphoinositides. J. Cell Biol. 135, 169–179 (1996)CrossRefGoogle Scholar
  32. 32.
    Schaub, S., Meister, J.J., Verkhovsky, A.B.: Analysis of actin filament network organization in lamellipodia by comparing experimental and simulated images. J. Cell Sci. 120, 1491–1500 (2007)CrossRefGoogle Scholar
  33. 33.
    Carlsson, A.E.: Growth of branched actin networks against obstacles. Biophys. J. 81, 1907–1923 (2001)CrossRefGoogle Scholar
  34. 34.
    Chaudhuri, O., Parekh, S.H., Fletcher, D.A.: Reversible stress softening of actin networks. Nature 445, 295–298 (2007)CrossRefGoogle Scholar
  35. 35.
    Peskin, C.S., Odell, G.M., Oster, G.F.: Cellular motions and thermal fluctuations–the brownian ratchet. Biophys. J. 65, 316–324 (1993)CrossRefGoogle Scholar
  36. 36.
    Mogilner, A., Oster, G.: Force generation by actin polymerization II: the elastic ratchet and tethered filaments. Biophys. J. 84, 1591–1605 (2003)Google Scholar
  37. 37.
    Dickinson, R.B., Purich, D.L.: Clamped-filament elongation model for actin-based motors. Biophys. J. 82, 605–617 (2002)CrossRefGoogle Scholar
  38. 38.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical-reactions. J. Phys. Chem. 81, 2340–2361 (1977)CrossRefGoogle Scholar
  39. 39.
    Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434 (1976)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Qian, J., Wang, J., Gao, H.: Lifetime and strength of adhesive molecular bond clusters between elastic media. Langmuir 24, 1262–1270 (2008)CrossRefGoogle Scholar
  41. 41.
    Zhang, W.L., Lin, Y., Qian, J., et al.: Tuning molecular adhesion via material anisotropy. Adv. Funct. Mater. 23, 4729–4738 (2013)Google Scholar
  42. 42.
    Zhu, J., Mogilner, A.: Mesoscopic model of actin-based propulsion. PLoS Comput. Biol. 8, e1002764 (2012)Google Scholar
  43. 43.
    Mogilner, A.: Mathematics of cell motility: have we got its number? J. Math. Biol. 58, 105–134 (2009)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Lin, Y., Wei, X., Qian, J., et al.: A combined finite element-Langevin dynamics (FEM-LD) approach for analyzing the mechanical response of bio-polymer networks. J. Mech. Phys. Solids 62, 2–18 (2014)Google Scholar
  45. 45.
    Wei, X., Zhu, Q., Qian, J., et al.: Response of biopolymer networks governed by the physical properties of cross-linking molecules. Soft Matter 12, 2537–2541 (2016)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Engineering Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang ProvinceZhejiang UniversityHangzhouChina

Personalised recommendations