Skip to main content
Log in

Experimental study on cracking behaviour of moulded gypsum containing two non-parallel overlapping flaws under uniaxial compression

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Failure of rock mass that is subjected to compressive loads occurs from initiation, propagation, and linkage of new cracks from preexisting fissures. Our research investigates the cracking behaviour and coalescence process in a brittle material with two non-parallel overlapping flaws using a high-speed camera. The coalescence tensile crack and tensile wing cracks were the first cracks to occur from the preexisting flaws. The initiation stresses of the primary cracks at the two tips of each flaw were simultaneous and decreased with reduced flaw inclination angle. The following types of coalescence cracks were identified between the flaws: primary tensile coalescence crack, tensile crack linkage, shear crack linkage, mixed tensile-shear crack, and indirect crack coalescence. Coalescence through tensile linkage occurred mostly at pre-peak stress. In contrast, coalescence through shear or mixed tensile-shear cracks occurred at higher stress. Overall, this study indicates that the geometry of preexisting flaws affect crack initiation and coalescence behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Prudencio, M., Van Sint Jan, M.: Strength and failure modes of rock mass models with non-persistent joints. Int. J. Rock Mech. Min. Sci. 44, 890–902 (2007)

    Article  Google Scholar 

  2. Jaeger, J.C.: Shear Failure of Anistropic Rocks. Geol. Mag. 97, 65–72 (1960)

    Article  Google Scholar 

  3. Camones, L.A.M.: Vargas, E.do A., de Figueiredo, R.P., et al.: Application of the discrete element method for modeling of rock crack propagation and coalescence in the step-path failure mechanism. Eng. Geol. 153, 80–94 (2013)

    Article  Google Scholar 

  4. Esterhuizen, G.S., Dolinar, D.R., Ellenberger, J.L.: Pillar strength in underground stone mines in the United States. Int. J. Rock Mech. Min. Sci. 48, 42–50 (2011)

    Article  Google Scholar 

  5. Ashby, M.F., Sammis, C.G.: The damage mechanics of brittle solids in compression. Pure Appl. Geophys. 133, 489–521 (1990)

    Article  Google Scholar 

  6. Eberhardt, E., Stead, D., Stimpson, B.: Quantifying progressive pre-peak brittle fracture damage in rock during uniaxial compression. Int. J. Rock Mech. Min. Sci. 36, 361–380 (1999)

    Article  Google Scholar 

  7. Eberhardt, E., Stimpson, B., Stead, D.: Effects of grain size on the initiation and propagation thresholds of stress-induced brittle fractures. Rock Mech. Rock Eng. 32, 81–99 (1999)

    Article  Google Scholar 

  8. Ichikawa, Y., Kawamura, K., Uesugi, K., et al.: Micro- and macrobehavior of granitic rock: observations and viscoelastic homogenization analysis. Comput. Methods Appl. Mech. Eng. 191, 47–72 (2001)

    Article  MATH  Google Scholar 

  9. Einstein, H.H., Veneziano, D., Baecher, G.B., et al.: The effect of discontinuity persistence on rock slope stability. Int. J. Rock Mech. Min. Sci. Geomech. Abstr 20, 227–236 (1983)

  10. Jing, L.: A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. Int. J. Rock Mech. Min. Sci. 40, 283–353 (2003)

    Article  Google Scholar 

  11. Yang, S.-Q., Jing, H.-W.: Strength failure and crack coalescence behavior of brittle sandstone samples containing a single fissure under uniaxial compression. Int. J. Fract. 168, 227–250 (2010)

    Article  Google Scholar 

  12. Wong, L.N.Y., Einstein, H.H.: Crack coalescence in molded gypsum and carrara marble: part 1. macroscopic observations and interpretation. Rock Mech. Rock Eng. 42, 475–511 (2009)

    Article  Google Scholar 

  13. Wong, L.N.Y., Einstein, H.H.: Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression. Int. J. Rock Mech. Min. Sci. 46, 239–249 (2009)

    Article  Google Scholar 

  14. Sagong, M., Bobet, A.: Coalescence of multiple flaws in a rock-model material in uniaxial compression. Int. J. Rock Mech. Min. Sci. 39, 229–241 (2002)

    Article  Google Scholar 

  15. Zhang, X.P., Wong, L.N.Y.: Cracking processes in rock-like material containing a single flaw under uniaxial compression: a numerical study based on parallel bonded-particle model approach. Rock Mech. Rock Eng. 45, 711–737 (2012)

    Google Scholar 

  16. Zhang, X.-P., Wong, L.N.Y.: Crack initiation, propagation and coalescence in rock-like material containing two flaws: a numerical study based on bonded-particle model approach. Rock Mech. Rock Eng. 46, 1001–1021 (2013)

    Article  Google Scholar 

  17. Lee, H., Jeon, S.: An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression. Int. J. Solids Struct. 48, 979–999 (2011)

    Article  MATH  Google Scholar 

  18. Cao, P., Liu, T., Pu, C., Lin, H.: Crack propagation and coalescence of brittle rock-like specimens with pre-existing cracks in compression. Eng. Geol. 187, 113–121 (2015)

    Article  Google Scholar 

  19. Cao, R., Cao, P., Lin, H., et al.: Mechanical behavior of brittle rock-like specimens with pre-existing fissures under uniaxial loading: experimental studies and particle mechanics approach. Rock Mech. Rock Eng. 49, 763–783 (2016)

    Article  Google Scholar 

  20. Zhou, X.P., Bi, J., Qian, Q.H.: Numerical simulation of crack growth and coalescence in rock-like materials containing multiple pre-existing flaws. Rock Mech. Rock Eng. 48, 1097–1114 (2015)

    Article  Google Scholar 

  21. Morgan, S., Johnson, C., Einstein, H.: Cracking processes in Barre granite: fracture process zones and crack coalescence. Int. J. Fract. 180, 177–204 (2013)

    Article  Google Scholar 

  22. Li, H.-Q., Wong, L.N.Y.: Numerical study on coalescence of pre-existing flaw pairs in rock-like material. Rock Mech. Rock Eng. 47, 2087–2105 (2014)

    Article  Google Scholar 

  23. Wong, L.N.Y., Li, H.-Q.: Numerical study on coalescence of two pre-existing coplanar flaws in rock. Int. J. Solids Struct. 50, 3685–3706 (2013)

    Article  Google Scholar 

  24. Yin, P., Wong, R.H.C., Chau, K.T.: Coalescence of two parallel pre-existing surface cracks in granite. Int. J. Rock Mech. Min. Sci. 68, 66–84 (2014)

    Google Scholar 

  25. Yang, S.-Q., Liu, X.-R., Jing, H.-W.: Experimental investigation on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression. Int. J. Rock Mech. Min. Sci. 63, 82–92 (2013)

    Google Scholar 

  26. Yang, S.Q., Huang, Y.H., Jing, H.W., et al.: Discrete element modeling on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression. Eng. Geol. 178, 28–48 (2014)

    Article  Google Scholar 

  27. Yang, S.Q., Yang, D.S., Jing, H.W., et al.: An experimental study of the fracture coalescence behaviour of brittle sandstone specimens containing three fissures. Rock Mech. Rock Eng. 45, 563–582 (2012)

    Article  Google Scholar 

  28. Park, C.H., Bobet, A.: Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression. Eng. Fract. Mech. 77, 2727–2748 (2010)

    Article  Google Scholar 

  29. Park, C.H., Bobet, A.: Crack coalescence in specimens with open and closed flaws: a comparison. Int. J. Rock Mech. Min. Sci. 46, 819–829 (2009)

    Article  Google Scholar 

  30. Zhao, Y., Zhang, L., Wang, W., et al.: Cracking and Stress-Strain Behavior of Rock-Like Material Containing Two Flaws Under Uniaxial Compression. Rock Mech. Rock Eng. 49, 2665–2687 (2016)

    Article  Google Scholar 

  31. Huang, Y.H., Yang, S.Q., Tian, W.L., et al.: An experimental study on fracture mechanical behavior of rock-like materials containing two unparallel fissures under uniaxial compression. Acta Mech. Sin. 32, 442–455 (2016)

    Article  Google Scholar 

  32. Wong, R.H.C., Chau, K.T.: Crack coalescence in a rock-like material containing two cracks. Int. J. Rock Mech. Min. Sci. 35, 147–164 (1998)

    Article  Google Scholar 

  33. Huang, D., Cen, D., Ma, G., et al.: Step-path failure of rock slopes with intermittent joints. Landslides 12, 911–926 (2014)

    Article  Google Scholar 

  34. Wong, L.N.Y., Einstein, H.H.: Using high speed video imaging in the study of cracking processes in rock. Geotech. Test. J. 32, 164–180 (2009)

    Google Scholar 

  35. Bobet, A., Einstein, H.H.: Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int. J. Rock Mech. Min. Sci. 35, 863–888 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

The project was supported by the National Natural Science Foundation of China (Grants 41572310, 41272351), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grants XDB10030301, XDB10030304). The first author is thankful for the support provided by the CAS-TWAS Presidential Fellowship, University of Chinese Academy of Sciences, Beijing, China

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lekan Olatayo Afolagboye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afolagboye, L.O., He, J. & Wang, S. Experimental study on cracking behaviour of moulded gypsum containing two non-parallel overlapping flaws under uniaxial compression. Acta Mech. Sin. 33, 394–405 (2017). https://doi.org/10.1007/s10409-016-0624-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-016-0624-9

Keywords

Navigation