Acta Mechanica Sinica

, Volume 33, Issue 1, pp 132–147 | Cite as

Atomistic simulation of free transverse vibration of graphene, hexagonal SiC, and BN nanosheets

  • Danh-Truong Nguyen
  • Minh-Quy Le
  • Thanh-Lam Bui
  • Hai-Le Bui
Research Paper

Abstract

Free transverse vibration of monolayer graphene, boron nitride (BN), and silicon carbide (SiC) sheets is investigated by using molecular dynamics finite element method. Eigenfrequencies and eigenmodes of these three sheets in rectangular shape are studied with different aspect ratios with respect to various boundary conditions. It is found that aspect ratios and boundary conditions affect in a similar way on natural frequencies of graphene, BN, and SiC sheets. Natural frequencies in all modes decrease with an increase of the sheet’s size. Graphene exhibits the highest natural frequencies, and SiC sheet possesses the lowest ones. Missing atoms have minor effects on natural frequencies in this study.

Keywords

Atomistic simulation Hexagonal sheet Transverse vibration Molecular dynamics finite element method 

References

  1. 1.
    Hashemnia, K., Farid, M., Vatankhah, R.: Vibrational analysis of carbon nanotubes and graphene sheets using molecular structural mechanics approach. Comput. Mater. Sci. 47, 79–85 (2009)CrossRefGoogle Scholar
  2. 2.
    Murmu, T., Pradhan, S.: Small-scale effect on the free in-plane vibration of nanoplates by nonlocal continuum model. Phys. E: Low-dimensional Syst. Nanostruct. 41, 1628–1633 (2009)CrossRefGoogle Scholar
  3. 3.
    Gupta, S., Batra, R.: Elastic properties and frequencies of free vibrations of single-layer graphene sheets. J. Comput. Theor. Nanosci. 7, 2151–2164 (2010)CrossRefGoogle Scholar
  4. 4.
    Aksencer, T., Aydogdu, M.: Levy type solution method for vibration and buckling of nanoplates using nonlocal elasticity theory. Phys. E: Low-dimensional Syst. Nanostruct. 43, 954–959 (2011)CrossRefGoogle Scholar
  5. 5.
    Chowdhury, R., Adhikari, S., Scarpa, F., et al.: Transverse vibration of single-layer graphene sheets. J. Phys. D: Appl. Phys. 44, 205401 (2011)CrossRefGoogle Scholar
  6. 6.
    Ávila, A.F., Eduardo, A.C., Neto, A.S.: Vibrational analysis of graphene based nanostructures. Comput. Struct. 89, 878–892 (2011)CrossRefGoogle Scholar
  7. 7.
    Arghavan, S., Singh, A.: Atomic lattice structure and continuum plate theories for the vibrational characteristics of graphenes. J. Appl. Phys. 110, 084308 (2011)CrossRefGoogle Scholar
  8. 8.
    Arghavan, S., Singh, A.: Free vibration of single layer graphene sheets: lattice structure versus continuum plate theories. J. Nanotechnol. Eng. Med. 2, 031005 (2011)CrossRefGoogle Scholar
  9. 9.
    Arghavan, S.: Vibration of carbon nano-structures. [Ph.D. Thesis], The University of Western Ontario, Canada (2012)Google Scholar
  10. 10.
    Mohammadi, M., Ghayour, M., Farajpour, A.: Free transverse vibration analysis of circular and annular graphene sheets with various boundary conditions using the nonlocal continuum plate model. Compos. Part B: Eng. 45, 32–42 (2013)CrossRefGoogle Scholar
  11. 11.
    Mohammadi, M., Goodarzi, M., Ghayour, M., et al.: Influence of in-plane pre-load on the vibration frequency of circular graphene sheet via nonlocal continuum theory. Compos. Part B: Eng. 51, 121–129 (2013)CrossRefGoogle Scholar
  12. 12.
    Murmu, T., McCarthy, M., Adhikari, S.: In-plane magnetic field affected transverse vibration of embedded single-layer graphene sheets using equivalent nonlocal elasticity approach. Compos. Struct. 96, 57–63 (2013)CrossRefGoogle Scholar
  13. 13.
    Wang, C., Lan, L., Liu, Y., et al.: Vibration characteristics of wrinkled single-layered graphene sheets. Int. J. Solids Struct. 50, 1812–1823 (2013)CrossRefGoogle Scholar
  14. 14.
    Mandal, U., Pradhan, S.: Transverse vibration analysis of single-layered graphene sheet under magneto-thermal environment based on nonlocal plate theory. J. Appl. Phys. 116, 164303 (2014)CrossRefGoogle Scholar
  15. 15.
    Samaei, A., Aliha, M., Mirsayar, M.: Frequency analysis of a graphene sheet embedded in an elastic medium with consideration of small scale. Mater. Phys. Mech. 22, 125–135 (2015)Google Scholar
  16. 16.
    Arani, A.G., Kolahchi, R., Allahyari, S.: Nonlocal DQM for large amplitude vibration of annular boron nitride sheets on nonlinear elastic medium. J. Solid Mech. 6, 334–346 (2014)Google Scholar
  17. 17.
    López-Suárez, M., Pruneda, M., Abadal, G., et al.: Piezoelectric monolayers as nonlinear energy harvesters. Nanotechnology 25, 175401 (2014)CrossRefGoogle Scholar
  18. 18.
    Arani, A.G., Fereidoon, A., Kolahchi, R.: Nonlinear surface and nonlocal piezoelasticity theories for vibration of embedded single-layer boron nitride sheet using harmonic differential quadrature and differential cubature methods. J. Intell. Mater. Syst. Struct. 26, 1150–1163 (2015)CrossRefGoogle Scholar
  19. 19.
    Ansari, R., Torabi, J.: Nonlocal vibration analysis of circular double-layered graphene sheets resting on an elastic foundation subjected to thermal loading. Acta Mech. Sin. 32, 841–853 (2016)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Le, M.-Q., Nguyen, D.-T.: Atomistic simulations of pristine and defective hexagonal BN and SiC sheets under uniaxial tension. Mater. Sci. Eng. A 615, 481–488 (2014)CrossRefGoogle Scholar
  21. 21.
    Le, M.-Q., Nguyen, D.-T.: Determination of elastic properties of hexagonal sheets by atomistic finite element method. J. Comput. Theor. Nanosci. 12, 566–574 (2015)CrossRefGoogle Scholar
  22. 22.
    Le, M.-Q., Nguyen, D.-T.: The role of defects in the tensile properties of silicene. Appl. Phys. A 118, 1437–1445 (2015)CrossRefGoogle Scholar
  23. 23.
    Zienkiewicz, O., Taylor, R., Zhu, J.: The Finite Element Method: Its Basis and Fundamentals. Butterworth-Heinemann, London (2005)MATHGoogle Scholar
  24. 24.
    Hand, L.N., Finch, J.D.: Analytical Mechanics. Cambridge University Press, Cambridge (1998)CrossRefGoogle Scholar
  25. 25.
    Riley, K.F., Hobson, M.P., Bence, S.J.: Mathematical Methods for Physics and Engineering: A Comprehensive Guide. Cambridge University Press, Cambridge (2006)CrossRefMATHGoogle Scholar
  26. 26.
    Inman, D.J.: Engineering Vibration, 4th ed. Pearson Education, Inc., Upper Saddle River, New Jersey (2013)Google Scholar
  27. 27.
    Şahin, H., Cahangirov, S., Topsakal, M., et al.: Monolayer honeycomb structures of group-IV elements and III-V binary compounds: first-principles calculations. Phys. Rev. B 80, 155453 (2009)CrossRefGoogle Scholar
  28. 28.
    Chang, T., Gao, H.: Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J. Mech. Phys. Solids 51, 1059–1074 (2003)CrossRefMATHGoogle Scholar
  29. 29.
    Jiang, L., Guo, W.: A molecular mechanics study on size-dependent elastic properties of single-walled boron nitride nanotubes. J. Mech. Phys. Solids 59, 1204–1213 (2011)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Ansari, R., Rouhi, S., Aryayi, M., et al.: On the buckling behavior of single-walled silicon carbide nanotubes. Sci. Iran. 19, 1984–1990 (2012)CrossRefGoogle Scholar
  31. 31.
    Panchal, M.B., Upadhyay, S., Harsha, S.: Vibrational characteristics of defective single walled BN nanotube based nanomechanical mass sensors: single atom vacancies and divacancies. Sens. Actuators A: Phys. 197, 111–121 (2013)CrossRefGoogle Scholar
  32. 32.
    Dayah, M.: Dynamic periodic table. Retrieved December 18, 2014 (1997)Google Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Danh-Truong Nguyen
    • 1
  • Minh-Quy Le
    • 1
    • 2
  • Thanh-Lam Bui
    • 1
    • 3
  • Hai-Le Bui
    • 1
    • 2
  1. 1.School of Mechanical EngineeringHanoi University of Science and TechnologyHanoiVietnam
  2. 2.International Institute for Computational Science and EngineeringHanoi University of Science and TechnologyHanoiVietnam
  3. 3.Faculty of Mechanical EngineeringHanoi University of IndustryHanoiVietnam

Personalised recommendations