Acta Mechanica Sinica

, Volume 33, Issue 1, pp 106–119 | Cite as

An energy-consistent fracture model for ferroelectrics

Research Paper
  • 140 Downloads

Abstract

The fracture behavior of ferroelectrics has been intensively studied in recent decades, though currently a widely accepted fracture mechanism is still lacking. In this work, enlightened by previous experimental observations that crack propagation in ferroelectrics is always accompanied by domain switching, we propose a micromechanical model in which both crack propagation and domain switching are controlled by energy-based criteria. Both electric energy and mechanical energy can induce domain switching, while only mechanical energy can drive crack propagation. Furthermore, constrained domain switching is considered in this model, leading to the gradient domain switching zone near the crack tip. Analysis results show that stress-induced ferroelastic switching always has a toughening effect as the mechanical energy release rate serves as the driving force for both fracture and domain switching. In comparison, the electric-field-induced switching may have either a toughening or detoughening effect. The proposed model can qualitatively agree with the existing experimental results.

Keywords

Fracture Ferroelectrics Domain switching Energy release rate 

References

  1. 1.
    Xu, Y.: Ferroelectric Materials and Their Applications. Amsterdam Press, North-Holland (1991)Google Scholar
  2. 2.
    Parton, V.Z.: Fracture mechanics of piezoelectric materials. Acta Astronaut. 3, 671–683 (1976)CrossRefMATHGoogle Scholar
  3. 3.
    Schneider, G.A.: Influence of electric field and mechanical stresses on the fracture of ferroelectrics. Ann. Rev. Mater. Res. 37, 491–538 (2007)CrossRefGoogle Scholar
  4. 4.
    Yamamoto, T., Igarashi, H., Okazaki, K.: Internal-stress anisotropies induced by electric-field in lanthanum modified Pb TiO\(_3\) Ceramics. Ferroelectrics 50, 599–604 (1983)Google Scholar
  5. 5.
    Pisarenko, G.G., Chushko, V.M., Kovalev, S.P.: Anisotropy of fracture-toughness of piezoelectric ceramics. J. Am. Ceram. Soc. 68, 259–265 (1985)CrossRefGoogle Scholar
  6. 6.
    Mehta, K., Virkar, A.V.: Fracture mechanisms in ferroelectric-ferroelastic lead zirconate titanate [Zr–Ti = 0.54–0.46] Ceramics. J. Am. Ceram. Soc. 73, 567–574 (1990)CrossRefGoogle Scholar
  7. 7.
    Guiu, F., Hahn, B.S., Lee, H.L., et al.: Growth of indentation cracks in poled and unpoled PZT. J. Eur. Ceram. Soc. 17, 505–512 (1997)CrossRefGoogle Scholar
  8. 8.
    Meschke, F., Kolleck, A., Schneider, G.A.: R-curve behaviour of BaTiO\(_3\) due to stress-induced ferroelastic domain switching. J. Eur. Ceram. Soc. 17, 1143–1149 (1997)CrossRefGoogle Scholar
  9. 9.
    Kolleck, A., Schneider, G.A., Meschke, F.A.: R-curve behavior of BaTiO3- and PZT ceramics under the influence of an electric field applied parallel to the crack front. Acta Mater. 48, 4099–4113 (2000)CrossRefGoogle Scholar
  10. 10.
    Fang, F., Yang, W.: Poling-enhanced fracture resistance of lead zirconate titanate ferroelectric ceramics. Mater. Lett. 46, 131–135 (2000)CrossRefGoogle Scholar
  11. 11.
    Calderon-Moreno, J.M., Popa, M.: Fracture toughness anisotropy by indentation and SEVNB on tetragonal PZT polycrystals. Mater. Sci. Eng. Struct. Mater. Prop. Microstruct. Process. 319, 692–696 (2001)CrossRefGoogle Scholar
  12. 12.
    Meschke, F., Raddatz, O., Kolleck, A., et al.: R-curve behavior and crack-closure stresses in barium titanate and (Mg, Y)-PSZ ceramics. J. Am. Ceram. Soc. 83, 353–361 (2000)CrossRefGoogle Scholar
  13. 13.
    Winzer, S.R., Shankar, N., Ritter, A.P.: Designing cofired multilayer electrostrictive actuators for reliability. J. Am. Ceram. Soc. 72, 2246–2257 (1989)CrossRefGoogle Scholar
  14. 14.
    Cao, H.C., Evans, A.G.: Electric-field-induced fatigue-crack growth in piezoelectrics. J. Am. Ceram. Soc. 77, 1783–1786 (1994)CrossRefGoogle Scholar
  15. 15.
    Lynch, C.S., Yang, W., Collier, L., et al.: Electric field induced cracking in ferroelectric ceramics. Ferroelectrics 166, 11–30 (1995)CrossRefGoogle Scholar
  16. 16.
    Ting, Z., Fei, F., Wei, Y.: Fatigue crack growth in ferroelectric ceramics below the coercive field. J. Mater. Sci. Lett. 18, 1025–1027 (1999)CrossRefGoogle Scholar
  17. 17.
    Fang, D.N., Liu, B., Sun, C.T.: Fatigue crack growth in ferroelectric ceramics driven by alternating electric fields. J. Am. Ceram. Soc. 87, 840–846 (2004)CrossRefGoogle Scholar
  18. 18.
    Fang, D.N., Zhang, Y.H., Mao, G.Z.: A COD fracture model of ferroelectric ceramics with applications in electric field induced fatigue crack growth. Int. J. Fract. 167, 211–220 (2011)CrossRefMATHGoogle Scholar
  19. 19.
    Westrain, I., Oates, W.S., Lupascu, D.C., et al.: Mechanism of electric fatigue crack growth in lead zirconate titanate. Acta Mater. 55, 301–312 (2007)CrossRefGoogle Scholar
  20. 20.
    Westram, I., Kungl, H., Hoffmann, M.J., et al.: Influence of crystal structure on crack propagation under cyclic electric loading in lead-zirconate-titanate. J. Eur. Ceram. Soc. 29, 425–430 (2009)CrossRefGoogle Scholar
  21. 21.
    Fang, F., Yang, W., Zhang, F.C., et al.: Fatigue crack growth for BaTiO\(_3\) ferroelectric single crystals under cyclic electric loading. J. Am. Ceram. Soc. 88, 2491–2497 (2005)CrossRefGoogle Scholar
  22. 22.
    Jiang, Y.J., Fang, D.N.: Crack tip domain switching in a ferroelectric single crystal under alternating electric fields. Scr. Mater. 57, 735–738 (2007)CrossRefGoogle Scholar
  23. 23.
    Jiang, Y.J., Fang, D.N., Li, F.X.: In situ observation of electric-field-induced domain switching near a crack tip in poled 0.62PbMg\(_{1/3}\)Nb\(_{2/3}\)O\(_{3}\)-0.38PbTiO\(_{3}\) single crystal. Appl. Phys. Lett. 90, 222907 (2007)Google Scholar
  24. 24.
    Furuta, A., Uchino, K.: Dynamic observation of crack-propagation in piezoelectric multilayer actuators. J. Am. Ceram. Soc. 76, 1615–1617 (1993)CrossRefGoogle Scholar
  25. 25.
    Tobin, A.G., Pak, Y.E.: Effect of electric fields on fracture behavior of PZT ceramics. Proc. SPIE Int. Soc. Opt. Eng. 1916, 78–86 (1993)Google Scholar
  26. 26.
    Lynch, C.S.: Fracture of ferroelectric and relaxor electro-ceramics: influence of electric field. Acta Mater. 46, 599–608 (1998)CrossRefGoogle Scholar
  27. 27.
    Sun, C.T., Park, S.B.: Determination of fracture toughness of piezoceramics under the influence of electric field using Vickers indentation. Proc. SPIE Int. Soc. Opt. Eng. 2441, 213–222 (1995)Google Scholar
  28. 28.
    Schneider, G.A., Heyer, V.: Influence of the electric field on Vickers indentation crack growth in BaTiO3. J. Eur. Ceram. Soc. 19, 1299–1306 (1999)CrossRefGoogle Scholar
  29. 29.
    Wang, H.Y., Singh, R.N.: Crack propagation in piezoelectric ceramics: effects of applied electric fields. J. Appl. Phys. 81, 7471–7479 (1997)CrossRefGoogle Scholar
  30. 30.
    Fu, R., Zhang, T.Y.: Effects of an electric field on the fracture toughness of poled lead zirconate titanate ceramics. J. Am. Ceram. Soc. 83, 1215–1218 (2000)CrossRefGoogle Scholar
  31. 31.
    Deeg, W.F.: Analysis of dislocation, cracks, and inclusion problems in piezoelectric solids [Ph.D. Thesis], Stanford University, America (1980)Google Scholar
  32. 32.
    Sosa, H.A., Pak, Y.E.: 3-Dimensional eigenfunction analysis of a crack in a piezoelectric material. Int. J. Solids. Struct. 26, 1–15 (1990)CrossRefMATHGoogle Scholar
  33. 33.
    Suo, Z., Kuo, C.M., Barnett, D.M., et al.: Fracture-mechanics for piezoelectric ceramics. J. Mech. Phys. Solids 40, 739–765 (1992)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Park, S.B., Sun, C.T.: Effect of electric-field on fracture of piezoelectric ceramics. Int. J. Fract. 70, 203–216 (1995)CrossRefGoogle Scholar
  35. 35.
    Park, S.B., Sun, C.T.: Fracture criteria for piezoelectric ceramics. J. Am. Ceram. Soc. 78, 1475–1480 (1995)CrossRefGoogle Scholar
  36. 36.
    Xu, X.L., Rajapakse, R.K.N.D.: Analytical solution for an arbitrarily oriented void crack and fracture of piezoceramics. Acta Mater. 47, 1735–1747 (1999)CrossRefGoogle Scholar
  37. 37.
    Kuna, M.: Fracture mechanics of piezoelectric materials—where are we right now? Eng. Fract. Mech. 77, 309–326 (2010)CrossRefGoogle Scholar
  38. 38.
    McMeeking, R.M.: The energy release rate for a Griffith crack in a piezoelectric material. Eng. Fract. Mech. 71, 1149–1163 (2004)CrossRefGoogle Scholar
  39. 39.
    McMeeking, R.M.: Towards a fracture mechanics for brittle piezoelectric and dielectric materials. Int. J. Fract. 108, 25–41 (2001)CrossRefGoogle Scholar
  40. 40.
    Zhang, T.Y., Gao, C.F.: Fracture behaviors of piezoelectric materials. Theor. Appl. Fract. Mec 41, 339–379 (2004)CrossRefGoogle Scholar
  41. 41.
    Dunn, M.L.: The effects of crack face boundary-conditions on the fracture-mechanics of piezoelectric solids. Eng. Fract. Mech. 48, 25–39 (1994)CrossRefGoogle Scholar
  42. 42.
    Landis, C.M.: Energetically consistent boundary conditions for electromechanical fracture. Int. J. Solids. Struct. 41, 6291–6315 (2004)CrossRefMATHGoogle Scholar
  43. 43.
    Gao, H.J., Zhang, T.Y., Tong, P.: Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic. J. Mech. Phys. Solids 45, 491–510 (1997)CrossRefGoogle Scholar
  44. 44.
    Mcmeeking, R.M., Evans, A.G.: Mechanics of transformation-toughening in Brittle materials. J. Am. Ceram. Soc. 65, 242–246 (1982)CrossRefGoogle Scholar
  45. 45.
    Lambropoulos, J.C.: Shear, shape and orientation effects in transformation toughening. Int. J. Solids Struct. 22, 1083–1106 (1986)CrossRefGoogle Scholar
  46. 46.
    Budiansky, B., Hutchinson, J.W., Lambropoulos, J.C.: Continuum theory of dilatant transformation toughening in ceramics. Int. J. Solids Struct. 19, 337–355 (1983)CrossRefMATHGoogle Scholar
  47. 47.
    Zhu, T., Yang, W.: Fatigue crack growth in ferroelectrics driven by cyclic electric loading. J. Mech. Phys. Solids 47, 81–97 (1999)Google Scholar
  48. 48.
    Yang, W., Zhu, T.: Switch-toughening of ferroelectrics subjected to electric fields. J. Mech. Phys. Solids 46, 291–311 (1998)CrossRefMATHGoogle Scholar
  49. 49.
    Rajapakse, R.K.N.D., Zeng, X.: Toughening of conducting cracks due to domain switching. Acta Mater. 49, 877–885 (2001)Google Scholar
  50. 50.
    Cui, Y.Q., Yang, W.: Toughening under non-uniform ferro-elastic domain switching. Int. J. Solids Struct. 43, 4452–4464 (2006)Google Scholar
  51. 51.
    Sheng, J.S., Landis, C.M.: Toughening due to domain switching in single crystal ferroelectric materials. Int. J. Fract. 143, 161–175 (2007)CrossRefMATHGoogle Scholar
  52. 52.
    Kreher, W.S.: Influence of domain switching zones on the fracture toughness of ferroelectrics. J. Mech. Phys. Solids 50, 1029–1050 (2002)CrossRefMATHGoogle Scholar
  53. 53.
    Fang, F., Yang, W., Zhu, T.: Crack tip 90 degrees domain switching in tetragonal lanthanum-modified lead zirconate titanate under an electric field. J. Mater. Res. 14, 2940–2944 (1999)CrossRefGoogle Scholar
  54. 54.
    Miserez, A., Rossoll, A., Mortensen, A.: Investigation of crack-tip plasticity in high volume fraction particulate metal matrix composites. Eng. Fract. Mech. 71, 2385–2406 (2004)CrossRefGoogle Scholar
  55. 55.
    Forderreuther, A., Thurn, G., Zimmermann, A., et al.: R-curve effect, influence of electric field and process zone in BaTiO\(_3\) ceramics. J. Eur. Ceram. Soc. 22, 2023–2031 (2002)CrossRefGoogle Scholar
  56. 56.
    Hackemann, S., Pfeiffer, W.: Domain switching in process zones of PZT: characterization by microdiffraction and fracture mechanical methods. J. Eur. Ceram. Soc. 23, 141–151 (2003)CrossRefGoogle Scholar
  57. 57.
    Cui, Y.Q., Zhong, Z.: A novel criterion for nonuniform domain switching of tetragonal ferroelectrics. Mech. Mater. 45, 61–71 (2012)CrossRefGoogle Scholar
  58. 58.
    Li, F.X., Rajapakse, R.K.N.D.: A constrained domain-switching model for polycrystalline ferroelectric ceramics. Part I: model formulation and application to tetragonal materials. Acta Mater. 55, 6472–6480 (2007)CrossRefGoogle Scholar
  59. 59.
    Mura, T.: Micromechanics of defects in solids, 2nd edn. Martinus Nijhoff Publishers, Dordrecht (1987)CrossRefMATHGoogle Scholar
  60. 60.
    Dong, S.X., Yan, L., Viehland, D., et al.: A piezoelectric single crystal traveling wave step motor for low-temperature application. Appl. Phys. Lett. 92, 1530 (2008)Google Scholar
  61. 61.
    Jiang, Y., Zhang, Y., Liu, B., et al.: Study on crack propagation in ferroelectric single crystal under electric loading. Acta Mater. 57, 1630–1638 (2009)CrossRefGoogle Scholar
  62. 62.
    Yang, W., Suo, Z.: Cracking in ceramic actuators caused by electrostriction. J. Mech. Phys. Solids. 42, 649–663 (1994)CrossRefGoogle Scholar
  63. 63.
    Zhu, T., Yang, W.: Toughness variation of ferroelectrics by polarization switch under non-uniform electric field. Acta Mater. 45, 4695–4702 (1997)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.LTCS and Department of Mechanics and Engineering Science, College of EngineeringPeking UniversityBeijingChina
  2. 2.Center for Applied Physics and TechniquesPeking UniversityBeijingChina

Personalised recommendations