Skip to main content
Log in

A new subregion mesh method for the investigation of the elastic-plastic impact in flexible multibody systems

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Impact processes between flexible bodies often lead to local stress concentration and wave propagation of high frequency. Therefore, the modeling of flexible multibody systems involving impact should consider the local plastic deformation and the strict requirements of the spatial discretization. Owing to the nonlinearity of the stiffness matrix, the reduction of the element number is extremely important. For the contact-impact problem, since different regions have different requirements regarding the element size, a new subregion mesh method is proposed to reduce the number of the unnecessary elements. A dynamic model for flexible multibody systems with elastic-plastic contact impact is established based on a floating frame of reference formulation and complete Lagrange incremental nonlinear finite-element method to investigate the effect of the elastic-plastic deformation as well as spatial discretization. Experiments on the impact between two bodies are carried out to validate the correctness of the elastic-plastic model. The proposed formulation is applied to a slider-crank system with elastic-plastic impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Goldsmith, W.: Impact: The Theory and Physical Behavior of Colliding Solids. Edward Arnold, London (1960)

    MATH  Google Scholar 

  2. Chouly, F., Hildb, P.: On convergence of the penalty method for unilateral contact problems. Appl. Numer. Math. 65, 27–40 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Weyler, R., Oliver, J., Sain, T., et al.: On the contact domain method: a comparison of penalty and Lagrange multiplier implementations. Comput. Methods Appl. Mech. Eng. 68, 205–208 (2012)

  4. Lankarani, H.M., Nikravesh, P.E.: Continuous contact force models for impact analysis in multibody systems. Nonlinear Dyn. 5, 193–207 (1994)

    Google Scholar 

  5. Yigit, A.S.: On the use of an elastic-plastic impact law for the impact of a single flexible link. ASME J. Dyn. Syst. Meas. Control 117, 527–533 (1995)

    Article  MATH  Google Scholar 

  6. Bauchau, O.A.: Analysis of flexible multibody systems with intermittent contacts. Multibody Syst. Dyn. 4, 23–54 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hu, B., Eberhard, P., Schiehlen, W.: Comparison of analytical and experimental results for longitudinal impacts on elastic rods. J. Vib. Control 9, 157–174 (2003)

    Article  MATH  Google Scholar 

  8. Hariharesan, S., Barhorst, A.A.: Modeling simulation and experimental verification of contact/impact dynamics in flexible multibody systems. J. Sound Vib. 221, 709–732 (1999)

    Article  Google Scholar 

  9. Schiehlen, W., Seifried, R.: Three approaches for elasticdynamic contact in multibody systems. Multibody Syst. Dyn. 12, 1–16 (2004)

    Article  MATH  Google Scholar 

  10. Seifried, R., Schiehlen, W., Eberhard, P.: Numerical and experimental evaluation of the coefficient of restitution for repeated impacts. Int. J. Impact Eng. 32, 508–524 (2005)

    Article  Google Scholar 

  11. Schiehlen, W., Seifried, R., Eberhard, P.: Elasticplastic phenomena in multibody impact dynamics. Comput. Methods Appl. Mech. Eng. 195, 6874–6890 (2006)

    Article  MATH  Google Scholar 

  12. Modarres Najafabadi, S.A., Kövecses, J., Angeles, J.: Impacts in multibody systems: modeling and experiments. Multibody Syst. Dyn. 20, 163–176 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dorogoy, A., Rittel, D.: Transverse impact of free-free square aluminum beams: an experimental numerical investigation. Int. J. Impact Eng. 35, 569–577 (2008)

    Article  Google Scholar 

  14. Minamoto, H., Seifried, R.: Analysis of repeated impacts on a steel rod with visco-plastic material behavior. Eur. J. Mech. A/Solids 30, 336–344 (2011)

    Article  MATH  Google Scholar 

  15. Ziegler, P., Eberhard, P.: Simulative and experimental investigation of impacts on gear wheels. Comput. Methods Appl. Mech. Eng. 197, 4653–4662 (2008)

    Article  MATH  Google Scholar 

  16. Hong, J.Z.: Computational Multibody Dynamics. High Education Press, Beijing (1999). (in Chinese)

  17. Ambrosio, J.A.C.: Dynamics of structures undergoing gross motion and nonlinear deformations: a multibody approach. Comput. Struct. 59, 1001–1012 (1996)

    Article  MATH  Google Scholar 

  18. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method: Solid Mechanics. Butterworth-Heinemann, Oxford (2000)

    MATH  Google Scholar 

  19. Wang, X.C.: Finite Element Method. Tsinghua University press, Beijing (2003). (in Chinese)

  20. Shi, W., Jinyang, L.: Dynamic analysis for an elastic-plastic planar plate undergoing large overall motion. J. Dyn. Control 4, 003 (2011)

    Google Scholar 

  21. Chen, P., Liu, J.Y., Hong, J.Z.: An efficient formulation based on the Lagrangian method for contact-impact analysis of flexible multi-body system. Acta Mech. Sin. 32, 326–334 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Moser, F., Jacobs, L.J., Qu, J.: Modeling elastic wave propagation in waveguides with the finite element method. NDT E Int. 32, 225–234 (1999)

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation of China (Grants 11132007, 11272203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Yang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Liu, JY. & Lu, GC. A new subregion mesh method for the investigation of the elastic-plastic impact in flexible multibody systems. Acta Mech. Sin. 33, 189–199 (2017). https://doi.org/10.1007/s10409-016-0603-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-016-0603-1

Keywords

Navigation