Skip to main content
Log in

Analytical solutions for elastic binary nanotubes of arbitrary chirality

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Analytical solutions for the elastic properties of a variety of binary nanotubes with arbitrary chirality are obtained through the study of systematic molecular mechanics. This molecular mechanics model is first extended to chiral binary nanotubes by introducing an additional out-of-plane inversion term into the so-called stick-spiral model, which results from the polar bonds and the buckling of binary graphitic crystals. The closed-form expressions for the longitudinal and circumferential Young’s modulus and Poisson’s ratio of chiral binary nanotubes are derived as functions of the tube diameter. The obtained inversion force constants are negative for all types of binary nanotubes, and the predicted tube stiffness is lower than that by the former stick-spiral model without consideration of the inversion term, reflecting the softening effect of the buckling on the elastic properties of binary nanotubes. The obtained properties are shown to be comparable to available density functional theory calculated results and to be chirality and size sensitive. The developed model and explicit solutions provide a systematic understanding of the mechanical performance of binary nanotubes consisting of III–V and II–VI group elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chopra, N.G., Luyken, R.J., Crespi, V.H., et al.: Boron nitride nanotubes. Science 269, 966–967 (1995)

  2. Jeng, Y.R., Tsai, P.C., Fang, T.H.: Molecular dynamics investigation of the mechanical properties of gallium nitride nanotubes under tension and fatigue. Nanotechnology 15, 1737–1744 (2004)

    Article  Google Scholar 

  3. Wang, B.L., Nagase, S., Zhao, J.J., et al.: The stability and electronic structure of single-walled ZnO nanotubes by density functional theory. Nanotechnology 18, 345706 (2007)

  4. Husain, M.M.: Computation of structural and electronic properties of single-wall II–VI compound nanotubes. Physica E 41, 1329–1337 (2009)

    Article  Google Scholar 

  5. Guo, Y.H., Yan, X.H., Yang, Y.: First-principles study of narrow single-walled GaN nanotubes. Phys. Lett. A 373, 367–370 (2009)

    Article  Google Scholar 

  6. Chowdhury, R., Adhikari, S., Scarpa, F.: Elasticity and piezoelectricity of zinc oxide nanostructure. Physica E 42, 2036–2040 (2010)

    Article  Google Scholar 

  7. Mirzaei, M., Giahi, M.: Computational studies on boron nitride and boron phosphide nanotubes: density functional calculations of boron-11 electric field gradient tensors. Physica E 42, 1667–1669 (2010)

    Article  Google Scholar 

  8. Mirzaei, M., Mirzaei, M.: Aluminum phosphide nanotubes: density functional calculations of aluminum-27 and phosphorus-31 chemical shielding parameters. J. Mol. Struct. 951, 69–71 (2010)

    Article  Google Scholar 

  9. Mirzaei, M., Mirzaei, M.: A computational study of gallium phosphide nanotubes. Physica E 43, 1343–1345 (2011)

    Article  Google Scholar 

  10. Mirzaei, M., Yousefi, M., Meskinfam, M.: Studying (\(n\), 0) and (\(m, m\)) GaP nanotubes (\(n = 3\) \(-10\) and \(m = 2\) \(-6\)) through DFT calculations of Ga-69 quadrupole coupling constants. Solid State Sci. 14, 801–804 (2012)

    Article  Google Scholar 

  11. Hernandez, E., Goze, C., Bernier, P., et al.: Elastic properties of C and \({\rm B}_{x}{\rm C}_{y}{\rm N}_{z}\) composite nanotubes. Phys. Rev. Lett. 80, 4502–4505 (1998)

  12. Vaccarini, L., Goze, C., Henrard, L., et al.: Mechanical and electronic properties of carbon and boron-nitride nanotubes. Carbon 38, 1681–1690 (2000)

  13. Kudin, K.N., Scuseria, G.E., Yakobson, B.I.: C2F, BN, and C nanoshell elasticity from ab initio computations. Phys. Rev. B 64, 235406–235416 (2001)

    Article  Google Scholar 

  14. Akdim, B., Pachter, R., Duan, X.F., et al.: Comparative theoretical study of single-wall carbon and boron-nitride nanotubes. Phys. Rev. B 67, 245404 (2003)

  15. Baumeier, B., Krüger, P., Pollmann, J.: Structural, elastic, and electronic properties of SiC, BN, and BeO nanotubes. Phys. Rev. B 76, 085407 (2007)

    Article  Google Scholar 

  16. Gou, G.Y., Pan, B.C., Shi, L.: Theoretical study of size-dependent properties of BN nanotubes with intrinsic defects. Phys. Rev. B 76, 155414 (2007)

    Article  Google Scholar 

  17. Jiang, L., Guo, W.L.: A molecular mechanics study on size-dependent elastic properties of single-walled boron nitride nanotubes. J. Mech. Phys. Solids 59, 1204–1213 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chang, T., Gao, H.J.: Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J. Mech. Phys. Solids 51, 1059–1074 (2003)

  19. Chang, T., Geng, J., Guo, X.: Chirality- and size-dependent elastic properties of single-walled carbon nanotubes. Appl. Phys. Lett. 87, 251929 (2005)

    Article  Google Scholar 

  20. Shen, L., Li, J.: Transversely isotropic elastic properties of single-walled carbon nanotubes. Phys. Rev. B 69, 045414 (2004)

  21. Shen, L., Li, J.: Equilibrium structure and strain energy of single-walled carbon nanotubes. Phys. Rev. B 71, 165427 (2005)

    Article  Google Scholar 

  22. Shen, L., Li, J.: Transversely isotropic elastic properties of multiwalled carbon nanotubes. Phys. Rev. B 71, 035412 (2005)

    Article  Google Scholar 

  23. Chang, T., Geng, J., Guo, X.: Prediction of chirality- and size-dependent elastic properties of single-walled carbon nanotubes via a molecular mechanics model. Proc. R. Soc. A 462, 2523–2540 (2006)

    Article  MATH  Google Scholar 

  24. Chang, T.: A molecular based anisotropic shell model for single-walled carbon nanotubes. J. Mech. Phys. Solids 58, 1422–1433 (2010)

    Article  MathSciNet  Google Scholar 

  25. Huber, K.P., Hertzberg, G.: Molecular Spectra and Molecular Siructure. IV. Constants of Diatomic Molecules. Van Nostrand Reinhold, New York (1979)

    Google Scholar 

  26. Rappe, A.K., Casewit, C.J., Colwell, K.S., et al: UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc 114, 10024 (1992)

Download references

Acknowledgments

This work was supported by the 973 Program (Grants 2013CB932604, 2012CB933403), a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, and Jiangsu Innovation Program for Graduate Education (Grant CXZZ12_0140).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanlin Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Guo, W. Analytical solutions for elastic binary nanotubes of arbitrary chirality. Acta Mech. Sin. 32, 1046–1057 (2016). https://doi.org/10.1007/s10409-016-0581-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-016-0581-3

Keywords

Navigation