Skip to main content

Nanoscale strain engineering of graphene and graphene-based devices


Structural distortions in nano-materials can induce dramatic changes in their electronic properties. This situation is well manifested in graphene, a two-dimensional honeycomb structure of carbon atoms with only one atomic layer thickness. In particular, strained graphene can result in both charging effects and pseudo-magnetic fields, so that controlled strain on a perfect graphene lattice can be tailored to yield desirable electronic properties. Here, we describe the theoretical foundation for strain-engineering of the electronic properties of graphene, and then provide experimental evidence for strain-induced pseudo-magnetic fields and charging effects in monolayer graphene. We further demonstrate the feasibility of nano-scale strain engineering for graphene-based devices by means of theoretical simulations and nano-fabrication technology.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. 1.

    Castro Neto, A.H., Guinea, F., Peres, N.M.R., et al.: The electronic properties of graphene: Castro Neto. Rev. Mod. Phys. 81, 109–162 (2009)

  2. 2.

    Novoselov, K.S., Geim, A.K., Morozov, S.V., et al.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197 (2005)

  3. 3.

    Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)

  4. 4.

    Guinea, F., Katsnelson, M.I., Vozmediano, M.A.H.: Midgap states and charge inhomogeneities in corrugated graphene. Phys. Rev. B 77, 075422 (2008)

    Article  Google Scholar 

  5. 5.

    Suzuura, H., Ando, T.: Phonons and electron–phonon scattering in carbon nanotubes. Phys. Rev. B 65, 235412 (2002)

    Article  Google Scholar 

  6. 6.

    Manes, J.L.: Symmetry-based approach to electron–phonon interactions in graphene. Phys. Rev. B 76, 045430 (2007)

    Article  Google Scholar 

  7. 7.

    Guinea, F., Katsnelson, M.I., Geim, A.K.: Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat. Phys. 6, 30–33 (2010)

    Article  Google Scholar 

  8. 8.

    Guinea, F., Geim, A.K., Katsnelson, M.I., et al.: Generating quantizing pseudomagnetic fields by bending graphene ribbons. Phys. Rev. B 81, 035408 (2010)

  9. 9.

    Teague, M.L., Lai, A.P., Velasco, J., et al.: Evidence for strain-induced local conductance modulations in single-layer graphene on \(\text{ SiO }_{2}\). Nano Lett. 9, 2542–2546 (2009)

    Article  Google Scholar 

  10. 10.

    Yeh, N.-C., Teague, M.L., Yeom, S., et al.: Strain-induced pseudo-magnetic fields and charging effects on CVD-grown graphene. Surf. Sci. 605, 1649–1656 (2011)

    Article  Google Scholar 

  11. 11.

    Levy, N., Burke, S.A., Meaker, K.L., et al.: Strain-induced pseudomagnetic fields greater than 300 Tesla in graphene nanobubbles. Science 329, 544 (2010)

    Article  Google Scholar 

  12. 12.

    Yeh, N.-C., Teague, M.L., Wu, R.T.-P., et al.: Scanning tunneling spectroscopic studies of Dirac fermions in graphene and topological insulators. EPJ Web Conf. 23, 00021 (2012)

    Article  Google Scholar 

  13. 13.

    Li, X., Cai, W., An, J., et al.: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312 (2009)

  14. 14.

    Hao, Y., Bharathi, M.S., Lei, W., et al.: The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 342, 720 (2013)

    Article  Google Scholar 

  15. 15.

    Herbut, I.F.: Pseudomagnetic catalysis of the time-reversal symmetry breaking in graphene. Phys. Rev. B 78, 205433 (2008)

    Article  Google Scholar 

  16. 16.

    Araki, Y.: Chiral symmetry restoration in monolayer graphene induced by Kekule distortion. Phys. Rev. B 84, 113402 (2011)

    Article  Google Scholar 

  17. 17.

    Yeh, N.-C., Teague, M.L., Yeom, S., et al.: Nanoscale strain-induced giant pseudo-magnetic fields and charging effects in CVD-grown graphene. ECS Trans. 35, 161–172 (2011)

    Article  Google Scholar 

  18. 18.

    Rycerz, A., Tworzydlo, J., Beenakker, C.W.J.: Valley filter and valley valve in graphene. Nat. Phys. 3, 172–175 (2007)

    Article  Google Scholar 

  19. 19.

    Lee, M.-K., Lue, N.-Y., Wen, C.-K., et al.: Valley-based field-effect transistors in graphene. Phys. Rev. B 86, 165411 (2012)

  20. 20.

    Gorbachev, R.V., Song, J.C.W., Yu, G.L., et al.: Detecting topological currents in graphene superlattices. Science 346, 448 (2014)

    Article  Google Scholar 

  21. 21.

    Boyd, D.A., Lin, W.-H., Hsu, C.-C., et al.: Single-step deposition of high mobility graphene at reduced temperatures. Nat. Comm. 6, 6620 (2015)

    Article  Google Scholar 

  22. 22.

    Ferrari, A.C., Meyer, J.C., Scardaci, V., et al.: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006)

  23. 23.

    Ferralis, N., Maboudian, R., Carraro, C.: Evidence of structural strain in epitaxial graphene layers on 6H-SiC(0001). Phys. Rev. Lett. 101, 156801 (2008)

    Article  Google Scholar 

  24. 24.

    Boyd, D.A.: Block Copolymer Lithography. In: Suib, S. L. (ed) Chapter 13 in New and Future Developments in Catalysis, pp. 305–332. Elsevier, Amsterdam (2013)., ISBN 9780444538741

Download references


This project was jointly supported by the National Science Foundation under the Institute for Quantum Information and Matter at California Institute of Technology, a grant from the Northrup Grumman Cooperation, and a gift from Mr. Lewis van Amerongen.

Author information



Corresponding author

Correspondence to N.-C. Yeh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yeh, NC., Hsu, CC., Teague, M.L. et al. Nanoscale strain engineering of graphene and graphene-based devices. Acta Mech. Sin. 32, 497–509 (2016).

Download citation


  • Graphene
  • Strain-engineering
  • Nanostructures
  • Dirac fermions
  • Pseudo-magnetic field
  • Valleytronics