Skip to main content
Log in

Non-intrusive hybrid interval method for uncertain nonlinear systems using derivative information

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

This paper proposes a new non-intrusive hybrid interval method using derivative information for the dynamic response analysis of nonlinear systems with uncertain-but-bounded parameters and/or initial conditions. This method provides tighter solution ranges compared to the existing polynomial approximation interval methods. Interval arithmetic using the Chebyshev basis and interval arithmetic using the general form modified affine basis for polynomials are developed to obtain tighter bounds for interval computation. To further reduce the overestimation caused by the “wrapping effect” of interval arithmetic, the derivative information of dynamic responses is used to achieve exact solutions when the dynamic responses are monotonic with respect to all the uncertain variables. Finally, two typical numerical examples with nonlinearity are applied to demonstrate the effectiveness of the proposed hybrid interval method, in particular, its ability to effectively control the overestimation for specific timepoints.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Chen, H.H.: Stability and chaotic dynamics of a rate gyro with feedback control under uncertain vehicle spin and acceleration. J. Sound Vib. 273, 949–968 (2004)

    Article  MATH  Google Scholar 

  2. Cheng, H., Sandu, A.: Uncertainty quantification and apportionment in air quality models using the polynomial chaos method. Environ. Modell. Softw. 24, 917–925 (2009)

    Article  Google Scholar 

  3. Astill, C.J., Imosseir, S.B., Shinozuka, M.: Impact loading on structures with random properties. J. Struct. Mech. 1, 63–77 (1972)

    Article  Google Scholar 

  4. Sun, T.C.: A finite element method for random differential equations with random coefficients. SIAM J. Numer. Anal. 16, 1019–1035 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  5. Li, J., Liao, S.: Response analysis of stochastic parameter structures under non-stationary random excitation. Comput. Mech. 27, 61–68 (2001)

    Article  MATH  Google Scholar 

  6. Chen, S.H., Liu, Z.S., Zhang, Z.F.: Random vibration analysis for large-scale structures with random parameters. Comput. Struct. 43, 681–685 (1992)

    Article  MATH  Google Scholar 

  7. Yakov, B.H., Elishakoff, I.: Convex Models of Uncertainty in Applied Mechanics, vol. 112. Elsevier, Amsterdam (1990)

    MATH  Google Scholar 

  8. Yurilev, C.C., Heriberto, R.F.: Comparation between some approaches to solve fuzzy differential equations. Fuzzy Sets Syst. 160, 1517–1527 (2009)

    Article  Google Scholar 

  9. Nieto, J.J., Khastan, A., Ivaz, K.: Numerical solution of fuzzy differential equations under generalized differentiability. Nonlinear Anal. Hybrid Syst. 3, 700–707 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bede, B., Rudas, I.J., Bencsik, A.L.: First order linear fuzzy differential equations under generalized differentiability. Inform. Sci. 177, 1648–1662 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hanss, M.: The transformation method for the simulation and analysis of systems with uncertain parameters. Fuzzy Sets Syst. 130, 277–289 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zadeh, L.A.: Fuzzy sets. Inform. Contr. 8, 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  13. Moens, D., Vandepitte, D.: Recent advances in non-probabilistic approaches for non-deterministic dynamic finite element analysis. Arch. Comput. Methods. Eng. 13, 389–464 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Moens, D., Vandepitte, D.: A survey of non-probabilistic uncertainty treatment in finite element analysis. Comput. Methods. Appl. Mech. Eng. 194, 1527–1555 (2005)

    Article  MATH  Google Scholar 

  15. Qiu, Z., Wang, X.: Comparison of dynamic response of structures with uncertain-but-bounded parameters using non-probabilistic interval analysis method and probabilistic approach. Int. J. Solids Struct. 40, 5423–5439 (2003)

    Article  MATH  Google Scholar 

  16. Yakov, B.H., Chen, G., Soong, T.T.: Maximum structural response using convex models. J. Eng. Mech. 122, 325–333 (1996)

    Article  Google Scholar 

  17. Moore, R.E.: Interval Analysis, vol. 4. Prentice-Hall, Englewood Cliffs (1966)

    MATH  Google Scholar 

  18. Revol, N., Makino, K., Berz, M.: Taylor models and floating-point arithmetic: proof that arithmetic operations are validated in COSY. J. Logic Algebr. Program. 64, 135–154 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Alefeld, G., Mayer, G.: Interval analysis: theory and applications. J. Comput. Appl. Math. 121, 421–464 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gao, W.: Natural frequency and mode shape analysis of structures with uncertainty. Mech. Syst. Signal Process. 21, 24–39 (2007)

  21. Chen, S., Lian, H., Yang, X.: Interval static displacement analysis for structures with interval parameters. Int. J. Numer. Methods Eng. 53, 393–407 (2002)

  22. Jackson, K.R., Nedialkov, N.S.: Some recent advances in validated methods for IVPs for ODEs. Appl. Numer. Math. 42, 269–284 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nedialkov, N.S., Jackson, K.R., Corliss, G.F.: Validated solutions of initial value problems for ordinary differential equations. Appl. Math. Comput. 105, 21–68 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nedialkov, N.S.: Computing rigorous bounds on the solution of an initial value problem for an ordinary differential equation. Dissertation, University of Toronto (1999)

  25. Berz, M., Makino, K.: Verified integration of ODEs and flows using differential algebraic methods on high-order Taylor models. Reliab. Comput. 4, 361–369 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hoefkens, J.: Rigorous numerical analysis with high-order Taylor models. Dissertation, Michigan State University (2001)

  27. Makino, K., Berz, M.: Efficient control of the dependency problem based on Taylor model methods. Reliab. Comput. 5, 3–12 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Makino, K., Berz, M.: Taylor models and other validated functional inclusion methods. Int. J. Pure Appl. Math. Sci. 4, 379–456 (2003)

    MathSciNet  MATH  Google Scholar 

  29. Lin, Y., Stadtherr, M.A.: Validated solutions of initial value problems for parametric ODEs. Appl. Numer. Math. 57, 1145–1162 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Qiu, Z., Wang, X.: Parameter perturbation method for dynamic responses of structures with uncertain-but-bounded parameters based on interval analysis. Int. J. Solids Struct. 42, 4958–4970 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Qiu, Z., Ma, L., Wang, X.: Non-probabilistic interval analysis method for dynamic response analysis of nonlinear systems with uncertainty. J. Sound Vib. 319, 531–540 (2009)

    Article  Google Scholar 

  32. Wu, J., Zhao, Y.Q., Chen, S.H.: An improved interval analysis method for uncertain structures. Struct. Eng. Mech. 20, 713–726 (2005)

    Article  Google Scholar 

  33. Wu, J., Zhang, Y., Chen, L., et al.: A Chebyshev interval method for nonlinear dynamic systems under uncertainty. Appl. Math. Modell. 37, 4578–4591 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Jaulin, L., Kieffer, M., Didrit, O., et al.: Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics. Springer, New York (2001)

    Book  Google Scholar 

  35. Moore, R.E.: Methods and Applications of Interval Analysis, vol. 2. Siam, Philadelphia (1979)

    Book  MATH  Google Scholar 

  36. Neumaier, A.: The Wrapping Effect, Ellipsoid Arithmetic, Stability and Confidence Regions. Springer, Vienna (1993)

    Book  Google Scholar 

  37. Bowyer, A., Berchtold, J., Eisenthal, D., et al.: Interval methods in geometric modeling. In: Geometric Modeling and Processing 2000. Theory and Applications. Proceedings. IEEE (2000)

  38. Shou, H.H., Martin, R., Voiculescu, I., et al.: Affine arithmetic in matrix form for polynomial evaluation and algebraic curve drawing. Prog. Nat. Sci. 12, 77–81 (2002)

    MathSciNet  MATH  Google Scholar 

  39. Shou, H.H., Lin, H., Martin, R., et al.: Modified affine arithmetic in tensor form for trivariate polynomial evaluation and algebraic surface plotting. J. Comput. Appl. Math. 195, 155–171 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Martin, R., Shou, H., Voiculescu, I., et al.: Comparison of interval methods for plotting algebraic curves. Comput. Aided Geom. Des. 19, 553–587 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  41. Gao, W., Zhang, N., Ji, J.C., et al.: Dynamic analysis of vehicles with uncertainty. Proc. Inst. Mech. Eng. Part D 222, 657–664 (2008)

    Article  Google Scholar 

  42. Wu, J., Luo, Z., Zhang, Y., et al.: Interval uncertain method for multibody mechanical systems using Chebyshev inclusion functions. Int. J. Numer. Methods Eng. 95, 608–630 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-Shu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, ZZ., Wang, TS. & Li, JF. Non-intrusive hybrid interval method for uncertain nonlinear systems using derivative information. Acta Mech. Sin. 32, 170–180 (2016). https://doi.org/10.1007/s10409-015-0500-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-015-0500-z

Keywords

Navigation