Advertisement

Acta Mechanica Sinica

, Volume 31, Issue 4, pp 531–535 | Cite as

Nanoindentation of soft solids by a flat punch

  • G. F. WangEmail author
  • X. R. Niu
Research Paper

Abstract

Measuring the surface tension and elastic modulus of soft materials and biological tissues under different physiological and pathological conditions is of significance for understanding various phenomena associated with deformation. In this paper, the nanoindentation of a circular flat punch on a soft solid is analyzed with the influence of surface tension. By solving the corresponding singular integral equation, the relation between load and indent depth is obtained. When the radius of the flat punch shrinks to the same order as the ratio of surface tension to elastic modulus, surface tension significantly affects the indentation load–depth relation, which provides a facile method to measure surface tension in soft solids and biological tissues.

Graphical Abstract

The nanoindentation of a circular flat punch on a soft solid is analyzed with the influence of surface tension. By solving the corresponding singular integral equation, the relation between load and indent depth is obtained. When the radius of a flat punch shrinks to the same order as the ratio of surface tension to elastic modulus, surface tension significantly affects the indentation load–depth relation, which provides a facile method to measure surface tension in soft solids and biological tissues.

Keywords

Nanoindentation Surface tension  Soft solid Biological tissue 

Notes

Acknowledgments

The project was supported by the National Natural Science Foundation of China (Grant 11272249).

References

  1. 1.
    Shenoy, V., Sharma, A.: Pattern formation in a thin solid film with interactions. Phys. Rev. Lett. 86, 119–122 (2001)CrossRefGoogle Scholar
  2. 2.
    Li, B., Cao, Y.P., Feng, X.Q., et al.: Surface wrinkling patterns on a core-shell soft sphere. Phys. Rev. Lett. 106, 234301 (2011)CrossRefGoogle Scholar
  3. 3.
    Majumder, A., Ghatak, A., Sharma, A.: Micro fluidic adhesion induced by subsurface microstructures. Science 318, 258–261 (2007)CrossRefGoogle Scholar
  4. 4.
    Nadermanna, N., Hui, C.Y., Jagota, A.: A. Solid surface tension measured by a liquid drop under a solid film. Proc. Natl Acad. Sci. 110, 10541 (2013)CrossRefGoogle Scholar
  5. 5.
    Style, R.W., Boltyanskiy, R., Che, Y., et al.: Universal deformation of soft substrates near a contact line and the direct measurement of solid surface tension. Phys. Rev. Lett. 110, 066103 (2013)CrossRefGoogle Scholar
  6. 6.
    Jagota, A., Paretkar, D., Ghatak, A.: Surface-tension-induced flattening of a nearly plane elastic solids. Phys. Rev. E 85, 051602 (2012)Google Scholar
  7. 7.
    Gerberich, W.W., Tymiak, N.I., Grunlan, J.C., et al.: Interpretations of indentation size effects. J. Appl. Mech. 69, 433–442 (2002)CrossRefGoogle Scholar
  8. 8.
    Johnson, K.L.: Contact Mechanics. Cambridge Univercsity Press, London (1985)zbMATHCrossRefGoogle Scholar
  9. 9.
    Ma, Q., Clarke, D.: Size-dependent hardness of silver single-crystals. J. Mater. Res. 10, 853–863 (1995)zbMATHCrossRefGoogle Scholar
  10. 10.
    Nix, W.D., Gao, H.: Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411–425 (1998)zbMATHCrossRefGoogle Scholar
  11. 11.
    Hajji, M.A.: Indentation of a membrane on an elastic half space. J. Appl. Mech. 45, 320–324 (1978)CrossRefGoogle Scholar
  12. 12.
    Gurtin, M.E., Murdoch, A.I.: Continuum theory of elastic-material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Gurtin, M.E., Weissmuller, J., Larche, F.: A general theory of curved deformable interfaces in solids at equilibrium. Philos. Mag. A 78, 1093–1109 (1998)CrossRefGoogle Scholar
  14. 14.
    Huang, G.Y., Yu, S.W.: Effect of surface elasticity on the interaction between steps. J. Appl. Mech. 74, 821–823 (2007)CrossRefGoogle Scholar
  15. 15.
    Wang, G.F., Feng, X.Q.: Effects of surface stresses on contact problems at nanoscale. J. Appl. Phys. 101, 013510 (2007)CrossRefGoogle Scholar
  16. 16.
    Chen, W.Q., Zhang, Ch.: Anti-plane shear Green’s functions for an isotropic elastic half-space with a material surface. Int. J. Solids Struct. 47, 1641–1650 (2010)CrossRefGoogle Scholar
  17. 17.
    Long, J.M., Wang, G.F.: Effects of surface tension on axisymmetric Hertzian contact problem. Mech. Mater. 56, 65–70 (2013)CrossRefGoogle Scholar
  18. 18.
    Gao, X., Hao, F., Fang, D.N., et al.: Mechanics of adhesive contact at the nanoscale: The effect of surface stress. Int. J. Solids Struct. 51, 566–574 (2013)zbMATHCrossRefGoogle Scholar
  19. 19.
    Chen, T.Y., Chiu, M.S., Weng, C.N.: Derivation of the generalized Young-Laplace equation of curved interfaces in nanoscaled solids. J. Appl. Phys. 100, 074308 (2006)CrossRefGoogle Scholar
  20. 20.
    Cammarata, R.C.: Surface and interface stress effects in thin-films. Prog. Surf. Sci. 46, 1–84 (1994)Google Scholar
  21. 21.
    Shuttleworth, R.: The surface tension of solids. Proc. Phys. Soc. Lond. Sect. A 63, 444–457 (1950)CrossRefGoogle Scholar
  22. 22.
    Shenoy, V.B.: Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys. Rev. B 71, 094104 (2005)CrossRefGoogle Scholar
  23. 23.
    Erdogan, F., Gupta, G.D.: Numerical solution of singular integral equations. Q. Appl. Math. 29, 525–529 (1972)MathSciNetGoogle Scholar
  24. 24.
    Zhang, M.G., Cao, Y.P., Li, G.Y., et al.: Pipette aspiration of hyperelastic compliant materials: Theoretical analysis, simulations and experiments. J. Mech. Phys. Solids 68, 179–196 (2014)CrossRefGoogle Scholar
  25. 25.
    Xu, X., Jagota, A., Hui, C.Y.: Effects of surface tension on the adhesive contact of a rigid sphere to a compliant substrate. Soft Matter 10, 4625–4632 (2014)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Engineering MechanicsSVL, Xi’an Jiaotong UniversityXi’anChina
  2. 2.Department of Mechanical and Biomedical EngineeringCity University of Hong KongKowloonChina

Personalised recommendations