Acta Mechanica Sinica

, Volume 31, Issue 2, pp 223–228 | Cite as

A piezoelectric energy harvester based on internal resonance

  • Liqun ChenEmail author
  • Wenan Jiang
Research Paper


A vibration-based energy harvester is essentially a resonator working in a limited frequency range. To increase the working frequency range is a challenging problem. This paper reveals a novel possibility for enhancing energy harvesting via internal resonance. An internal resonance energy harvester is proposed. The excitation is successively assumed as the Gaussian white noise, the colored noise defined by a second-order filter, the narrow-band noise, and exponentially correlated noise. The corresponding averaged root-mean-square output voltages are computed. Numerical results demonstrate that the internal resonance increases the operating bandwidth and the output voltage.

Graphical Abstract

Averaged root-mean-square voltage via standard deviation of white noise for five designs


Vibration energy harvesting Internal resonance Stochastic excitations 



This work was supported by the State Key Program of National Natural Science of China (Grant No. 11232009) and Shanghai Leading Academic Discipline Project (Grant No. S30106)


  1. 1.
    Elvin, N., Erturk, A.: Advances in Energy Harvesting Methods. Springer, Berlin (2013)CrossRefGoogle Scholar
  2. 2.
    Erturk, A., Inman, D.J.: Piezoelectric Energy Harvesting. Wiley, New York (2011)CrossRefGoogle Scholar
  3. 3.
    Tang, L.H., Yang, Y.W., Soh, C.K.: Toward broadband vibration-based energy harvesting. J. Intell. Mater. Syst. Struct. 21, 1867–1897 (2010)CrossRefGoogle Scholar
  4. 4.
    Zhu, D., Tudor, M.J., Beeby, S.P.: Strategies for increasing the operating frequency range of vibration energy harvesters: a review. Meas. Sci. Technol. 21, 022001 (2010)CrossRefGoogle Scholar
  5. 5.
    Challa, V.R., Prasad, M.G., Si, Y., et al.: A vibration energy harvesting device with bidirectional resonance frequency tenability. Smart Mater. Struct. 17, 015035 (2008)CrossRefGoogle Scholar
  6. 6.
    Erturk, A., Hoffmann, J., Inman, D.J.: A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl. Phys. Lett. 94, 254102 (2009)CrossRefGoogle Scholar
  7. 7.
    Mann, B.P., Sims, N.D.: Energy harvesting from the nonlinear oscillations of magnetic levitation. J. Sound Vib. 319, 515–530 (2009)CrossRefGoogle Scholar
  8. 8.
    Stanton, S.C., McGehee, C.C., Mann, B.P.: Reversible hysteresis for broadband magnetopiezoelastic energy harvesting. Appl. Phys. Lett. 95, 174103 (2009)CrossRefGoogle Scholar
  9. 9.
    Liu, L., Yuan, F.G.: Nonlinear vibration energy harvester using diamagnetic levitation. Appl. Phys. Lett. 98, 203507 (2011)CrossRefGoogle Scholar
  10. 10.
    Hajati, A., Kim, S.G.: Ultra-wide bandwidth piezoelectric energy harvesting. Appl. Phys. Lett. 99, 083105 (2011)CrossRefGoogle Scholar
  11. 11.
    Stanton, S.C., McGehee, C.C., Mann, B.P.: Nonlinear dynamics for broadband energy harvesting: investigation of a bistable piezoelectric inertial generator. Phys. D 239, 640–653 (2010)CrossRefzbMATHGoogle Scholar
  12. 12.
    Zhu, Y., Zu, J.W.: Enhanced buckled-beam piezoelectric energy harvesting using midpoint magnetic force. Appl. Phys. Lett. 103, 041905 (2013)CrossRefGoogle Scholar
  13. 13.
    Zhou, S., Cao, J., Erturk, A., et al.: Enhanced broadband piezoelectric energy harvesting using rotatable magnets. Appl. Phys. Lett. 102, 173901 (2013)CrossRefGoogle Scholar
  14. 14.
    Arrieta, A., Hagedorn, P., Erturk, A., et al.: A piezoelectric bistable plate for nonlinear broadband energy harvesting. Appl. Phys. Lett. 97, 104102 (2010)CrossRefGoogle Scholar
  15. 15.
    Cottone, F., Vocca, H., Gammaitoni, L.: Nonlinear energy harvesting. Phys. Rev. Lett. 102, 080601 (2009)CrossRefGoogle Scholar
  16. 16.
    Gammaitoni, L., Neri, I., Vocca, H.: Nonlinear oscillators for vibration energy harvesting. Appl. Phys. Lett. 94, 164102 (2009)Google Scholar
  17. 17.
    Litak, G., Friswell, M.I., Adhikari, S.: Magnetopiezoelastic energy harvesting driven by random excitations. Appl. Phys. Lett. 96, 214103 (2010)Google Scholar
  18. 18.
    Blarigan, L.V., Danzl, P., Moehlis, J.: A broadband vibrational energy harvester. Appl. Phys. Lett. 100, 214103 (2012)CrossRefGoogle Scholar
  19. 19.
    Daqaq, M.F.: Response of uni-modal Duffing-type harvesters to random forced excitations. J. Sound Vib. 329, 3621–3631 (2010)CrossRefGoogle Scholar
  20. 20.
    Wichenheiser, A.M., Garcia, E.: Broadband vibration-based energy harvesting improvement through frequency up-conversion by magnetic excitation. Smart Mater. Struct. 19, 065020 (2010)CrossRefGoogle Scholar
  21. 21.
    Khovanova, N.A., Khovanov, I.A.: The role of excitations statistic and nonlinearity in energy harvesting from random impulsive excitations. Appl. Phys. Lett. 99, 144101 (2011)CrossRefGoogle Scholar
  22. 22.
    Daqaq, M.F.: Transduction of a bistable inductive generator driven by Gaussian White and exponentially correlated noise. J. Sound Vib. 330, 2554–2564 (2011)CrossRefGoogle Scholar
  23. 23.
    Green, P.L., Worden, K., Atallah, K., et al.: The benefits of Duffing-type nonlinearities and electrical optimisation of a mono-stable energy harvester under white Gaussian excitations. J. Sound Vib. 331, 4504–4517 (2012)CrossRefGoogle Scholar
  24. 24.
    Nayfeh, A.H.: Nonlinear Interactions: Analytical, Computational, and Experimental Methods. Wiley, New York (2000)Google Scholar
  25. 25.
    Lichtenberg, A.J., Lieberman, M.A.: Regular and Chaotic Dynamics. Springer, Berlin (1992)CrossRefzbMATHGoogle Scholar
  26. 26.
    Hofmann, I., Qiang, J., Ryne, R.D.: Collective resonance model of energy exchange in 3D nonequipartitioned beams. Phys. Rev. Lett. 86, 2313 (2001)CrossRefGoogle Scholar
  27. 27.
    Vainchtein, D., Mezic, I.: Capture into resonance: a method for efficient control. Phys. Rev. Lett. 93, 084301 (2004)CrossRefGoogle Scholar
  28. 28.
    El-Bassiouny, A.F.: Internal resonance of a nonlinear vibration absorber. Phys. Scripta. 72, 203 (2005)CrossRefGoogle Scholar
  29. 29.
    Hu, S., Raman, A.: Chaos in atomic force microscopy. Phys. Rev. Lett. 96, 036107 (2006)CrossRefGoogle Scholar
  30. 30.
    Hacker, E., Gottlieb, O.: Internal resonance based sensing in non-contact atomic force microscopy. Appl. Phys. Lett. 101, 053106 (2012)CrossRefGoogle Scholar
  31. 31.
    Burrage, K., Burrage, P.M.: High strong order explicit Runge-Kutta methods for stochastic ordinary differential equations. Appl. Numer. Math. 22, 81–101 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Masana, R., Daqaq, M.F.: Response of duffing-type harvesters to band-limited noise. J. Sound Vib. 332, 6755–6767 (2013)CrossRefGoogle Scholar
  33. 33.
    Wedig, W.V.: Invariant measures and Lyapunov exponents for generalized parameter fluctuations. Struct. Saf. 8, 13–25 (1990)CrossRefGoogle Scholar
  34. 34.
    Xu, Y., Gu, R.C., Zhang, H.Q., et al.: Stochastic bifurcations in a bistable Duffing-Van der Pol oscillator with colored noise. Phys. Rev. E 83, 056215 (2011)CrossRefGoogle Scholar
  35. 35.
    Xu, Y., Duan, J.Q., Xu, W.: An averaging principle for stochastic dynamical systems with Levy noise. Phy. D 240, 1395–1401 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Xu, Y., Li, Y.G., Liu, D.: Response of fractional oscillators with viscoelastic term under random excitation. J. Comput. Nonlinear Dyn. 9, 031015 (2014)Google Scholar
  37. 37.
    Xu, Y., Guo, R., Jai, W.T., et al.: Stochastic averaging for a class of single degree of freedom systems with combined Gaussian noises. Acta Mech. 225, 2611–2620 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Tang, L.H., Yang, Y.W.: A nonlinear piezoelectric energy harvester with magnetic oscillator. Appl. Phys. Lett. 101, 094102 (2012)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of MechanicsShanghai UniversityShanghaiChina
  2. 2.Shanghai Institute of Applied Mathematics and MechanicsShanghai UniversityShanghaiChina
  3. 3.Shanghai Key Laboratory of Mechanics in Energy EngineeringShanghai UniversityShanghaiChina

Personalised recommendations